Skip to contents

Accelerated oblique random classification forest. Calls aorsf::orsf() from aorsf. Note that although the learner has the property "missing" and it can in principle deal with missing values, the behaviour has to be configured using the parameter na_action.

Initial parameter values

  • n_thread: This parameter is initialized to 1 (default is 0) to avoid conflicts with the mlr3 parallelization.

  • pred_simplify has to be TRUE, otherwise response is NA in prediction

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.aorsf")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, aorsf

Parameters

IdTypeDefaultLevelsRange
attach_datalogicalTRUETRUE, FALSE-
epsilonnumeric1e-09\([0, \infty)\)
importancecharacteranovanone, anova, negate, permute-
importance_max_pvaluenumeric0.01\([1e-04, 0.9999]\)
leaf_min_eventsinteger1\([1, \infty)\)
leaf_min_obsinteger5\([1, \infty)\)
max_iterinteger20\([1, \infty)\)
methodcharacterglmglm, net, pca, random-
mtryintegerNULL\([1, \infty)\)
mtry_rationumeric-\([0, 1]\)
n_retryinteger3\([0, \infty)\)
n_splitinteger5\([1, \infty)\)
n_threadinteger-\([0, \infty)\)
n_treeinteger500\([1, \infty)\)
na_actioncharacterfailfail, impute_meanmode-
net_mixnumeric0.5\((-\infty, \infty)\)
oobaglogicalFALSETRUE, FALSE-
oobag_eval_everyintegerNULL\([1, \infty)\)
oobag_fununtypedNULL-
oobag_pred_typecharacterprobnone, leaf, prob, class-
pred_aggregatelogicalTRUETRUE, FALSE-
sample_fractionnumeric0.632\([0, 1]\)
sample_with_replacementlogicalTRUETRUE, FALSE-
scale_xlogicalFALSETRUE, FALSE-
split_min_eventsinteger5\([1, \infty)\)
split_min_obsinteger10\([1, \infty)\)
split_min_statnumericNULL\([0, \infty)\)
split_rulecharacterginigini, cstat-
target_dfintegerNULL\([1, \infty)\)
tree_seedsintegerNULL\([1, \infty)\)
verbose_progresslogicalFALSETRUE, FALSE-

See also

Author

annanzrv

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifObliqueRandomForest

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method oob_error()

OOB concordance error extracted from the model slot eval_oobag$stat_values

Usage

LearnerClassifObliqueRandomForest$oob_error()

Returns

numeric().


Method importance()

The importance scores are extracted from the model.

Usage

LearnerClassifObliqueRandomForest$importance()

Returns

Named numeric().


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifObliqueRandomForest$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = lrn("classif.aorsf")
print(learner)
#> 
#> ── <LearnerClassifObliqueRandomForest> (classif.aorsf): Oblique Random Forest Cl
#> • Model: -
#> • Parameters: n_thread=1
#> • Packages: mlr3, mlr3extralearners, and aorsf
#> • Predict Types: [response] and prob
#> • Feature Types: integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, missings, multiclass, oob_error, twoclass, and
#> weights
#> • Other settings: use_weights = 'use'

# Define a Task
task = tsk("sonar")

# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> ---------- Oblique random classification forest
#> 
#>      Linear combinations: Logistic regression
#>           N observations: 139
#>                N classes: 2
#>                  N trees: 500
#>       N predictors total: 60
#>    N predictors per node: 8
#>  Average leaves per tree: 5.29
#> Min observations in leaf: 5
#>           OOB stat value: 0.86
#>            OOB stat type: AUC-ROC
#>      Variable importance: anova
#> 
#> -----------------------------------------
print(learner$importance())
#>         V36         V11         V48         V12         V51         V49 
#> 0.346666667 0.331914894 0.317991632 0.286274510 0.257777778 0.235042735 
#>         V47         V37         V43         V45         V44         V46 
#> 0.205645161 0.200000000 0.197478992 0.191666667 0.186440678 0.163865546 
#>         V35         V52         V57          V1          V9         V21 
#> 0.158730159 0.157894737 0.157676349 0.142857143 0.127118644 0.125506073 
#>         V22         V13         V23          V4         V10         V16 
#> 0.125000000 0.124481328 0.122881356 0.120930233 0.117647059 0.104417671 
#>         V58         V20          V2         V59         V15         V24 
#> 0.102564103 0.096774194 0.096638655 0.094827586 0.090090090 0.086466165 
#>         V31         V34         V56         V17         V27         V18 
#> 0.085937500 0.078260870 0.073469388 0.071428571 0.068085106 0.065217391 
#>         V50         V41         V54          V3         V14         V39 
#> 0.063291139 0.058295964 0.055045872 0.051886792 0.050583658 0.047826087 
#>         V38         V19         V26         V42         V28          V7 
#> 0.046025105 0.045871560 0.043478261 0.039062500 0.038626609 0.036885246 
#>         V29          V8         V30         V40          V6          V5 
#> 0.036885246 0.036866359 0.035856574 0.035573123 0.034334764 0.030303030 
#>         V53         V25         V55         V60         V33         V32 
#> 0.026086957 0.023904382 0.023529412 0.018348624 0.016877637 0.004149378 

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>  0.1449275