Skip to contents

Bayesian Additive Regression Trees are similar to gradient boosting algorithms. The classification problem is solved by 0-1 encoding of the two-class targets and setting the decision threshold to p = 0.5 during the prediction phase. Calls dbarts::bart() from dbarts.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.bart")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, dbarts

Parameters

IdTypeDefaultLevelsRange
ntreeinteger200\([1, \infty)\)
knumeric2\([0, \infty)\)
powernumeric2\([0, \infty)\)
basenumeric0.95\([0, 1]\)
binaryOffsetnumeric0\((-\infty, \infty)\)
ndpostinteger1000\([1, \infty)\)
nskipinteger100\([0, \infty)\)
printeveryinteger100\([0, \infty)\)
keepeveryinteger1\([1, \infty)\)
keeptrainfitslogicalTRUETRUE, FALSE-
usequantslogicalFALSETRUE, FALSE-
numcutinteger100\([1, \infty)\)
printcutoffsinteger0\((-\infty, \infty)\)
verboselogicalFALSETRUE, FALSE-
nthreadinteger1\((-\infty, \infty)\)
keepcalllogicalTRUETRUE, FALSE-
sampleronlylogicalFALSETRUE, FALSE-
seedintegerNA\((-\infty, \infty)\)
proposalprobsuntypedNULL-
splitprobsuntypedNULL-
keepsamplerlogical-TRUE, FALSE-

Parameter Changes

  • Parameter: keeptrees

  • Original: FALSE

  • New: TRUE

  • Reason: Required for prediction

  • Parameter: offset

  • The parameter is removed, because only dbarts::bart2 allows an offset during training, and therefore the offset parameter in dbarts:::predict.bart is irrelevant for dbarts::dbart.

  • Parameter: nchain, combineChains, combinechains

  • The parameters are removed as parallelization of multiple models is handled by future.

  • Parameter: sigest, sigdf, sigquant, keeptres

  • Regression only.

References

Sparapani, Rodney, Spanbauer, Charles, McCulloch, Robert (2021). “Nonparametric machine learning and efficient computation with bayesian additive regression trees: the BART R package.” Journal of Statistical Software, 97, 1–66.

Chipman, A H, George, I E, McCulloch, E R (2010). “BART: Bayesian additive regression trees.” The Annals of Applied Statistics, 4(1), 266–298.

See also

Author

ck37

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifBart

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifBart$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = mlr3::lrn("classif.bart")
print(learner)
#> <LearnerClassifBart:classif.bart>: Bayesian Additive Regression Trees
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3extralearners, dbarts
#> * Predict Types:  [response], prob
#> * Feature Types: integer, numeric, factor, ordered
#> * Properties: twoclass, weights

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
#> 
#> Running BART with binary y
#> 
#> number of trees: 200
#> number of chains: 1, number of threads 1
#> tree thinning rate: 1
#> Prior:
#> 	k prior fixed to 2.000000
#> 	power and base for tree prior: 2.000000 0.950000
#> 	use quantiles for rule cut points: false
#> 	proposal probabilities: birth/death 0.50, swap 0.10, change 0.40; birth 0.50
#> data:
#> 	number of training observations: 139
#> 	number of test observations: 0
#> 	number of explanatory variables: 60
#> 
#> Cutoff rules c in x<=c vs x>c
#> Number of cutoffs: (var: number of possible c):
#> (1: 100) (2: 100) (3: 100) (4: 100) (5: 100) 
#> (6: 100) (7: 100) (8: 100) (9: 100) (10: 100) 
#> (11: 100) (12: 100) (13: 100) (14: 100) (15: 100) 
#> (16: 100) (17: 100) (18: 100) (19: 100) (20: 100) 
#> (21: 100) (22: 100) (23: 100) (24: 100) (25: 100) 
#> (26: 100) (27: 100) (28: 100) (29: 100) (30: 100) 
#> (31: 100) (32: 100) (33: 100) (34: 100) (35: 100) 
#> (36: 100) (37: 100) (38: 100) (39: 100) (40: 100) 
#> (41: 100) (42: 100) (43: 100) (44: 100) (45: 100) 
#> (46: 100) (47: 100) (48: 100) (49: 100) (50: 100) 
#> (51: 100) (52: 100) (53: 100) (54: 100) (55: 100) 
#> (56: 100) (57: 100) (58: 100) (59: 100) (60: 100) 
#> 
#> offsets:
#> 	reg : 0.00 0.00 0.00 0.00 0.00
#> Running mcmc loop:
#> iteration: 100 (of 1000)
#> iteration: 200 (of 1000)
#> iteration: 300 (of 1000)
#> iteration: 400 (of 1000)
#> iteration: 500 (of 1000)
#> iteration: 600 (of 1000)
#> iteration: 700 (of 1000)
#> iteration: 800 (of 1000)
#> iteration: 900 (of 1000)
#> iteration: 1000 (of 1000)
#> total seconds in loop: 0.494574
#> 
#> Tree sizes, last iteration:
#> [1] 3 2 1 2 2 2 2 3 2 1 2 2 1 3 2 4 2 2 
#> 2 4 3 2 2 2 2 3 2 4 3 2 2 2 3 2 5 2 2 2 
#> 3 2 2 2 2 4 2 2 1 2 3 2 2 3 2 4 4 3 1 3 
#> 2 3 2 2 2 3 5 2 2 2 2 2 3 2 2 3 2 2 2 3 
#> 3 3 3 3 2 2 2 4 2 3 3 2 2 1 2 2 2 3 1 2 
#> 3 2 3 4 2 2 2 2 1 2 2 2 2 1 2 2 4 2 2 1 
#> 2 2 3 2 2 3 2 3 3 3 2 3 2 2 2 2 2 3 2 4 
#> 4 2 2 2 1 2 2 2 4 2 2 2 2 3 2 2 1 2 2 2 
#> 1 2 2 3 2 2 2 2 2 2 3 2 3 2 2 2 3 2 4 1 
#> 2 2 3 4 3 3 2 1 2 5 2 3 2 2 2 2 4 1 2 1 
#> 5 3 
#> 
#> Variable Usage, last iteration (var:count):
#> (1: 1) (2: 4) (3: 6) (4: 1) (5: 5) 
#> (6: 6) (7: 3) (8: 3) (9: 6) (10: 4) 
#> (11: 1) (12: 7) (13: 5) (14: 9) (15: 3) 
#> (16: 6) (17: 7) (18: 6) (19: 2) (20: 3) 
#> (21: 4) (22: 5) (23: 4) (24: 8) (25: 5) 
#> (26: 4) (27: 1) (28: 3) (29: 6) (30: 5) 
#> (31: 6) (32: 2) (33: 4) (34: 4) (35: 7) 
#> (36: 6) (37: 9) (38: 7) (39: 6) (40: 1) 
#> (41: 1) (42: 5) (43: 4) (44: 6) (45: 4) 
#> (46: 6) (47: 6) (48: 2) (49: 9) (50: 4) 
#> (51: 7) (52: 2) (53: 1) (54: 3) (55: 4) 
#> (56: 6) (57: 3) (58: 2) (59: 3) (60: 5) 
#> 
#> DONE BART
#> 

print(learner$model)
#> 
#> Call:
#> dbarts::bart(x.train = x_train, y.train = y_train, keeptrees = TRUE)
#> 


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>  0.1014493