BlockForest Classification Learner
Source:R/learner_blockForest_classif_blockforest.R
mlr_learners_classif.blockforest.RdRandom forests for blocks of clinical and omics covariate data.
Calls blockForest::blockfor() from package blockForest.
In this learner, only the trained forest object ($forest) is retained. The
optimized block-specific tuning parameters (paramvalues) and the biased OOB
error estimate (biased_oob_error_donotuse) are discarded, as they are either
not needed for downstream use or not reliable for performance estimation.
Initial parameter values
num.threadsis initialized to 1 to avoid conflicts with parallelization via future.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, blockForest
Parameters
| Id | Type | Default | Levels | Range |
| blocks | untyped | - | - | |
| block.method | character | BlockForest | BlockForest, RandomBlock, BlockVarSel, VarProb, SplitWeights | - |
| num.trees | integer | 2000 | \([1, \infty)\) | |
| mtry | untyped | NULL | - | |
| nsets | integer | 300 | \([1, \infty)\) | |
| num.trees.pre | integer | 1500 | \([1, \infty)\) | |
| splitrule | character | extratrees | extratrees, gini | - |
| always.select.block | integer | 0 | \([0, 1]\) | |
| importance | character | - | none, impurity, impurity_corrected, permutation | - |
| num.threads | integer | - | \([1, \infty)\) | |
| seed | integer | NULL | \((-\infty, \infty)\) | |
| verbose | logical | TRUE | TRUE, FALSE | - |
References
Hornung, R., Wright, N. M (2019). “Block Forests: Random forests for blocks of clinical and omics covariate data.” BMC Bioinformatics, 20(1), 1–17. doi:10.1186/s12859-019-2942-y , https://doi.org/10.1186/s12859-019-2942-y.
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifBlockForest
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Method importance()
The importance scores are extracted from the model slot variable.importance.
Returns
Named numeric().
Examples
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# check task's features
task$feature_names
#> [1] "V1" "V10" "V11" "V12" "V13" "V14" "V15" "V16" "V17" "V18" "V19" "V2"
#> [13] "V20" "V21" "V22" "V23" "V24" "V25" "V26" "V27" "V28" "V29" "V3" "V30"
#> [25] "V31" "V32" "V33" "V34" "V35" "V36" "V37" "V38" "V39" "V4" "V40" "V41"
#> [37] "V42" "V43" "V44" "V45" "V46" "V47" "V48" "V49" "V5" "V50" "V51" "V52"
#> [49] "V53" "V54" "V55" "V56" "V57" "V58" "V59" "V6" "V60" "V7" "V8" "V9"
# partition features to 2 blocks
blocks = list(bl1 = 1:42, bl2 = 43:60)
# define learner
learner = lrn("classif.blockforest", blocks = blocks,
importance = "permutation", nsets = 10, predict_type = "prob",
num.trees = 50, num.trees.pre = 10, splitrule = "gini")
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
# feature importance
learner$importance()
#> V12 V51 V11 V49 V48
#> 1.895817e-02 1.533218e-02 1.526693e-02 1.469123e-02 1.418623e-02
#> V9 V28 V13 V37 V45
#> 1.106882e-02 1.014492e-02 8.466230e-03 6.479529e-03 6.161251e-03
#> V1 V15 V52 V23 V26
#> 6.134813e-03 5.900057e-03 5.483168e-03 5.281203e-03 5.061789e-03
#> V4 V18 V22 V31 V21
#> 4.840731e-03 4.508136e-03 4.200747e-03 4.094931e-03 3.916157e-03
#> V5 V43 V2 V40 V59
#> 3.856421e-03 3.732280e-03 3.558813e-03 3.417858e-03 3.217859e-03
#> V60 V19 V32 V34 V36
#> 3.087898e-03 2.717835e-03 2.312647e-03 2.293456e-03 2.271587e-03
#> V55 V38 V30 V27 V25
#> 2.136273e-03 2.053968e-03 1.900975e-03 1.588694e-03 1.234133e-03
#> V33 V42 V6 V44 V58
#> 1.182604e-03 1.154646e-03 1.138061e-03 1.075908e-03 1.063199e-03
#> V24 V53 V46 V17 V10
#> 9.047619e-04 7.105620e-04 6.739338e-04 1.685664e-04 1.367960e-04
#> V39 V20 V16 V54 V47
#> 1.273585e-04 6.696429e-05 -6.005906e-05 -2.448783e-04 -3.571429e-04
#> V50 V56 V3 V7 V41
#> -3.763476e-04 -5.299546e-04 -6.519334e-04 -6.721192e-04 -1.142405e-03
#> V35 V57 V29 V14 V8
#> -1.476671e-03 -1.727105e-03 -1.791625e-03 -2.111687e-03 -2.291199e-03
# Make predictions for the test observations
pred = learner$predict(task, row_ids = ids$test)
pred
#>
#> ── <PredictionClassif> for 69 observations: ────────────────────────────────────
#> row_ids truth response prob.M prob.R
#> 5 R M 0.5301349 0.4698651
#> 10 R R 0.1822540 0.8177460
#> 13 R R 0.3823968 0.6176032
#> --- --- --- --- ---
#> 201 M M 0.8624444 0.1375556
#> 204 M M 0.8826190 0.1173810
#> 205 M M 0.7976349 0.2023651
# Score the predictions
pred$score()
#> classif.ce
#> 0.1884058