BlockForest Classification Learner
Source:R/learner_blockForest_classif_blockforest.R
mlr_learners_classif.blockforest.RdRandom forests for blocks of clinical and omics covariate data.
Calls blockForest::blockfor() from package blockForest.
In this learner, only the trained forest object ($forest) is retained. The
optimized block-specific tuning parameters (paramvalues) and the biased OOB
error estimate (biased_oob_error_donotuse) are discarded, as they are either
not needed for downstream use or not reliable for performance estimation.
Initial parameter values
num.threadsis initialized to 1 to avoid conflicts with parallelization via future.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, blockForest
Parameters
| Id | Type | Default | Levels | Range |
| blocks | untyped | - | - | |
| block.method | character | BlockForest | BlockForest, RandomBlock, BlockVarSel, VarProb, SplitWeights | - |
| num.trees | integer | 2000 | \([1, \infty)\) | |
| mtry | untyped | NULL | - | |
| nsets | integer | 300 | \([1, \infty)\) | |
| num.trees.pre | integer | 1500 | \([1, \infty)\) | |
| splitrule | character | extratrees | extratrees, gini | - |
| always.select.block | integer | 0 | \([0, 1]\) | |
| importance | character | - | none, impurity, impurity_corrected, permutation | - |
| num.threads | integer | - | \([1, \infty)\) | |
| seed | integer | NULL | \((-\infty, \infty)\) | |
| verbose | logical | TRUE | TRUE, FALSE | - |
References
Hornung, R., Wright, N. M (2019). “Block Forests: Random forests for blocks of clinical and omics covariate data.” BMC Bioinformatics, 20(1), 1–17. doi:10.1186/s12859-019-2942-y , https://doi.org/10.1186/s12859-019-2942-y.
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifBlockForest
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Method importance()
The importance scores are extracted from the model slot variable.importance.
Returns
Named numeric().
Examples
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# check task's features
task$feature_names
#> [1] "V1" "V10" "V11" "V12" "V13" "V14" "V15" "V16" "V17" "V18" "V19" "V2"
#> [13] "V20" "V21" "V22" "V23" "V24" "V25" "V26" "V27" "V28" "V29" "V3" "V30"
#> [25] "V31" "V32" "V33" "V34" "V35" "V36" "V37" "V38" "V39" "V4" "V40" "V41"
#> [37] "V42" "V43" "V44" "V45" "V46" "V47" "V48" "V49" "V5" "V50" "V51" "V52"
#> [49] "V53" "V54" "V55" "V56" "V57" "V58" "V59" "V6" "V60" "V7" "V8" "V9"
# partition features to 2 blocks
blocks = list(bl1 = 1:42, bl2 = 43:60)
# define learner
learner = lrn("classif.blockforest", blocks = blocks,
importance = "permutation", nsets = 10, predict_type = "prob",
num.trees = 50, num.trees.pre = 10, splitrule = "gini")
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
# feature importance
learner$importance()
#> V9 V11 V48 V12 V28
#> 2.041270e-02 1.352075e-02 1.143504e-02 7.646106e-03 7.143717e-03
#> V58 V17 V47 V1 V5
#> 6.097413e-03 5.089226e-03 4.544275e-03 4.492392e-03 4.360063e-03
#> V6 V51 V43 V54 V52
#> 4.176755e-03 4.125957e-03 3.447405e-03 3.257415e-03 2.921741e-03
#> V36 V45 V23 V8 V59
#> 2.698945e-03 2.146047e-03 1.839357e-03 1.829732e-03 1.788199e-03
#> V37 V13 V4 V53 V57
#> 1.727047e-03 1.539129e-03 1.347868e-03 1.334382e-03 1.284117e-03
#> V30 V7 V16 V20 V10
#> 1.277352e-03 1.276767e-03 1.007807e-03 9.879336e-04 9.810376e-04
#> V55 V24 V46 V50 V49
#> 9.696185e-04 9.494232e-04 8.804647e-04 8.483380e-04 8.238255e-04
#> V15 V29 V60 V14 V22
#> 8.179760e-04 7.264957e-04 4.552686e-04 2.722119e-04 2.501257e-04
#> V39 V44 V32 V3 V25
#> 2.105813e-04 2.057315e-04 1.650943e-04 8.593264e-05 2.572016e-05
#> V2 V41 V34 V18 V26
#> -4.523810e-05 -4.535147e-05 -5.402161e-05 -1.014109e-04 -1.332907e-04
#> V31 V38 V33 V19 V27
#> -1.546443e-04 -3.733807e-04 -3.901791e-04 -7.288538e-04 -7.492997e-04
#> V56 V21 V42 V40 V35
#> -8.204807e-04 -8.789542e-04 -1.036451e-03 -1.576219e-03 -1.678397e-03
# Make predictions for the test observations
pred = learner$predict(task, row_ids = ids$test)
pred
#>
#> ── <PredictionClassif> for 69 observations: ────────────────────────────────────
#> row_ids truth response prob.M prob.R
#> 3 R M 0.5711746 0.42882540
#> 4 R R 0.3784444 0.62155556
#> 9 R R 0.4056667 0.59433333
#> --- --- --- --- ---
#> 203 M M 0.8023889 0.19761111
#> 204 M M 0.9371667 0.06283333
#> 208 M R 0.4493333 0.55066667
# Score the predictions
pred$score()
#> classif.ce
#> 0.2753623