BlockForest Classification Learner
Source:R/learner_blockForest_classif_blockforest.R
mlr_learners_classif.blockforest.RdRandom forests for blocks of clinical and omics covariate data.
Calls blockForest::blockfor() from package blockForest.
In this learner, only the trained forest object ($forest) is retained. The
optimized block-specific tuning parameters (paramvalues) and the biased OOB
error estimate (biased_oob_error_donotuse) are discarded, as they are either
not needed for downstream use or not reliable for performance estimation.
Initial parameter values
num.threadsis initialized to 1 to avoid conflicts with parallelization via future.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, blockForest
Parameters
| Id | Type | Default | Levels | Range |
| blocks | untyped | - | - | |
| block.method | character | BlockForest | BlockForest, RandomBlock, BlockVarSel, VarProb, SplitWeights | - |
| num.trees | integer | 2000 | \([1, \infty)\) | |
| mtry | untyped | NULL | - | |
| nsets | integer | 300 | \([1, \infty)\) | |
| num.trees.pre | integer | 1500 | \([1, \infty)\) | |
| splitrule | character | extratrees | extratrees, gini | - |
| always.select.block | integer | 0 | \([0, 1]\) | |
| importance | character | - | none, impurity, impurity_corrected, permutation | - |
| num.threads | integer | - | \([1, \infty)\) | |
| seed | integer | NULL | \((-\infty, \infty)\) | |
| verbose | logical | TRUE | TRUE, FALSE | - |
References
Hornung, R., Wright, N. M (2019). “Block Forests: Random forests for blocks of clinical and omics covariate data.” BMC Bioinformatics, 20(1), 1–17. doi:10.1186/s12859-019-2942-y , https://doi.org/10.1186/s12859-019-2942-y.
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifBlockForest
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Method importance()
The importance scores are extracted from the model slot variable.importance.
Returns
Named numeric().
Examples
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# check task's features
task$feature_names
#> [1] "V1" "V10" "V11" "V12" "V13" "V14" "V15" "V16" "V17" "V18" "V19" "V2"
#> [13] "V20" "V21" "V22" "V23" "V24" "V25" "V26" "V27" "V28" "V29" "V3" "V30"
#> [25] "V31" "V32" "V33" "V34" "V35" "V36" "V37" "V38" "V39" "V4" "V40" "V41"
#> [37] "V42" "V43" "V44" "V45" "V46" "V47" "V48" "V49" "V5" "V50" "V51" "V52"
#> [49] "V53" "V54" "V55" "V56" "V57" "V58" "V59" "V6" "V60" "V7" "V8" "V9"
# partition features to 2 blocks
blocks = list(bl1 = 1:42, bl2 = 43:60)
# define learner
learner = lrn("classif.blockforest", blocks = blocks,
importance = "permutation", nsets = 10, predict_type = "prob",
num.trees = 50, num.trees.pre = 10, splitrule = "gini")
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
# feature importance
learner$importance()
#> V11 V12 V47 V49 V13
#> 2.561028e-02 1.323409e-02 1.235312e-02 1.019343e-02 9.810706e-03
#> V52 V36 V9 V48 V51
#> 9.481490e-03 8.606201e-03 7.305030e-03 6.870299e-03 5.862328e-03
#> V23 V4 V45 V27 V28
#> 5.626376e-03 5.203937e-03 4.543327e-03 4.515675e-03 4.494368e-03
#> V10 V37 V8 V1 V16
#> 4.441849e-03 4.049533e-03 3.858121e-03 3.820861e-03 3.566370e-03
#> V15 V19 V5 V6 V58
#> 3.331810e-03 3.266639e-03 3.144055e-03 2.895907e-03 2.735605e-03
#> V31 V25 V18 V17 V3
#> 2.659380e-03 2.353731e-03 2.350171e-03 1.882912e-03 1.550821e-03
#> V42 V50 V21 V35 V53
#> 1.515933e-03 1.480075e-03 1.361713e-03 1.222527e-03 1.192251e-03
#> V24 V38 V60 V56 V39
#> 1.104007e-03 1.089762e-03 1.055442e-03 8.904125e-04 4.835715e-04
#> V55 V57 V7 V22 V30
#> 4.432917e-04 4.093713e-04 3.908065e-04 2.124441e-04 1.215933e-05
#> V29 V26 V14 V44 V20
#> 9.591735e-06 -5.485564e-05 -3.424499e-04 -3.457508e-04 -4.053188e-04
#> V32 V43 V34 V40 V33
#> -4.504615e-04 -4.927023e-04 -5.826639e-04 -6.545455e-04 -7.056604e-04
#> V54 V41 V46 V2 V59
#> -8.328934e-04 -9.701128e-04 -1.044430e-03 -1.342388e-03 -1.897432e-03
# Make predictions for the test observations
pred = learner$predict(task, row_ids = ids$test)
pred
#>
#> ── <PredictionClassif> for 69 observations: ────────────────────────────────────
#> row_ids truth response prob.M prob.R
#> 6 R R 0.4162381 0.5837619
#> 7 R M 0.5662460 0.4337540
#> 14 R R 0.4997381 0.5002619
#> --- --- --- --- ---
#> 203 M M 0.7096667 0.2903333
#> 204 M M 0.8194127 0.1805873
#> 208 M M 0.5058095 0.4941905
# Score the predictions
pred$score()
#> classif.ce
#> 0.2463768