BlockForest Classification Learner
Source:R/learner_blockForest_classif_blockforest.R
mlr_learners_classif.blockforest.Rd
Random forests for blocks of clinical and omics covariate data.
Calls blockForest::blockfor()
from package blockForest.
In this learner, only the trained forest object ($forest
) is retained. The
optimized block-specific tuning parameters (paramvalues
) and the biased OOB
error estimate (biased_oob_error_donotuse
) are discarded, as they are either
not needed for downstream use or not reliable for performance estimation.
Initial parameter values
num.threads
is initialized to 1 to avoid conflicts with parallelization via future.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, blockForest
Parameters
Id | Type | Default | Levels | Range |
blocks | untyped | - | - | |
block.method | character | BlockForest | BlockForest, RandomBlock, BlockVarSel, VarProb, SplitWeights | - |
num.trees | integer | 2000 | \([1, \infty)\) | |
mtry | untyped | NULL | - | |
nsets | integer | 300 | \([1, \infty)\) | |
num.trees.pre | integer | 1500 | \([1, \infty)\) | |
splitrule | character | extratrees | extratrees, gini | - |
always.select.block | integer | 0 | \([0, 1]\) | |
importance | character | - | none, impurity, impurity_corrected, permutation | - |
num.threads | integer | - | \([1, \infty)\) | |
seed | integer | NULL | \((-\infty, \infty)\) | |
verbose | logical | TRUE | TRUE, FALSE | - |
References
Hornung, R., Wright, N. M (2019). “Block Forests: Random forests for blocks of clinical and omics covariate data.” BMC Bioinformatics, 20(1), 1–17. doi:10.1186/s12859-019-2942-y , https://doi.org/10.1186/s12859-019-2942-y.
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifBlockForest
Methods
Inherited methods
mlr3::Learner$base_learner()
mlr3::Learner$configure()
mlr3::Learner$encapsulate()
mlr3::Learner$format()
mlr3::Learner$help()
mlr3::Learner$predict()
mlr3::Learner$predict_newdata()
mlr3::Learner$print()
mlr3::Learner$reset()
mlr3::Learner$selected_features()
mlr3::Learner$train()
mlr3::LearnerClassif$predict_newdata_fast()
Method importance()
The importance scores are extracted from the model slot variable.importance
.
Returns
Named numeric()
.
Examples
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# check task's features
task$feature_names
#> [1] "V1" "V10" "V11" "V12" "V13" "V14" "V15" "V16" "V17" "V18" "V19" "V2"
#> [13] "V20" "V21" "V22" "V23" "V24" "V25" "V26" "V27" "V28" "V29" "V3" "V30"
#> [25] "V31" "V32" "V33" "V34" "V35" "V36" "V37" "V38" "V39" "V4" "V40" "V41"
#> [37] "V42" "V43" "V44" "V45" "V46" "V47" "V48" "V49" "V5" "V50" "V51" "V52"
#> [49] "V53" "V54" "V55" "V56" "V57" "V58" "V59" "V6" "V60" "V7" "V8" "V9"
# partition features to 2 blocks
blocks = list(bl1 = 1:42, bl2 = 43:60)
# define learner
learner = lrn("classif.blockforest", blocks = blocks,
importance = "permutation", nsets = 10, predict_type = "prob",
num.trees = 50, num.trees.pre = 10, splitrule = "gini")
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
# feature importance
learner$importance()
#> V9 V12 V48 V11 V49
#> 2.917662e-02 2.219828e-02 1.638956e-02 1.600801e-02 8.711407e-03
#> V51 V47 V17 V22 V13
#> 8.361882e-03 7.678265e-03 6.180360e-03 5.686361e-03 5.316656e-03
#> V52 V27 V28 V54 V15
#> 4.467209e-03 4.199809e-03 4.113874e-03 3.986618e-03 3.871675e-03
#> V10 V16 V4 V43 V6
#> 3.498572e-03 3.453766e-03 3.141137e-03 3.102352e-03 2.990641e-03
#> V23 V35 V1 V21 V19
#> 2.934904e-03 2.762931e-03 2.725908e-03 2.681251e-03 2.640633e-03
#> V40 V37 V42 V44 V59
#> 2.595200e-03 1.954516e-03 1.841476e-03 1.806520e-03 1.565542e-03
#> V46 V31 V36 V5 V3
#> 1.486271e-03 1.453809e-03 1.345795e-03 1.266201e-03 1.025677e-03
#> V20 V7 V14 V30 V25
#> 9.196745e-04 8.210060e-04 6.137522e-04 5.345138e-04 4.998363e-04
#> V55 V29 V34 V38 V24
#> 3.656343e-04 2.285580e-04 2.003030e-04 1.980392e-04 1.864858e-04
#> V33 V53 V2 V58 V26
#> 7.819512e-05 4.772633e-05 1.010101e-05 -5.695671e-05 -1.214700e-04
#> V8 V50 V41 V39 V45
#> -1.399251e-04 -2.295283e-04 -4.166667e-04 -4.299640e-04 -4.654824e-04
#> V56 V32 V57 V18 V60
#> -7.917436e-04 -8.091881e-04 -1.109983e-03 -1.345855e-03 -2.526247e-03
# Make predictions for the test observations
pred = learner$predict(task, row_ids = ids$test)
pred
#>
#> ── <PredictionClassif> for 69 observations: ────────────────────────────────────
#> row_ids truth response prob.M prob.R
#> 1 R M 0.5451667 0.4548333
#> 4 R R 0.3412698 0.6587302
#> 5 R R 0.4388492 0.5611508
#> --- --- --- --- ---
#> 203 M M 0.7935000 0.2065000
#> 204 M M 0.7921825 0.2078175
#> 206 M M 0.6810635 0.3189365
# Score the predictions
pred$score()
#> classif.ce
#> 0.173913