Gradient Boosted Decision Trees Classification Learner
mlr_learners_classif.catboost.Rd
Gradient boosting algorithm that also supports categorical data.
Calls catboost::catboost.train()
from package 'catboost'.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, catboost
Parameters
Id | Type | Default | Levels | Range |
loss_function_twoclass | character | Logloss | Logloss, CrossEntropy | - |
loss_function_multiclass | character | MultiClass | MultiClass, MultiClassOneVsAll | - |
learning_rate | numeric | 0.03 | \([0.001, 1]\) | |
random_seed | integer | 0 | \([0, \infty)\) | |
l2_leaf_reg | numeric | 3 | \([0, \infty)\) | |
bootstrap_type | character | - | Bayesian, Bernoulli, MVS, Poisson, No | - |
bagging_temperature | numeric | 1 | \([0, \infty)\) | |
subsample | numeric | - | \([0, 1]\) | |
sampling_frequency | character | PerTreeLevel | PerTree, PerTreeLevel | - |
sampling_unit | character | Object | Object, Group | - |
mvs_reg | numeric | - | \([0, \infty)\) | |
random_strength | numeric | 1 | \([0, \infty)\) | |
depth | integer | 6 | \([1, 16]\) | |
grow_policy | character | SymmetricTree | SymmetricTree, Depthwise, Lossguide | - |
min_data_in_leaf | integer | 1 | \([1, \infty)\) | |
max_leaves | integer | 31 | \([1, \infty)\) | |
ignored_features | untyped | NULL | - | |
one_hot_max_size | untyped | FALSE | - | |
has_time | logical | FALSE | TRUE, FALSE | - |
rsm | numeric | 1 | \([0.001, 1]\) | |
nan_mode | character | Min | Min, Max | - |
fold_permutation_block | integer | - | \([1, 256]\) | |
leaf_estimation_method | character | - | Newton, Gradient, Exact | - |
leaf_estimation_iterations | integer | - | \([1, \infty)\) | |
leaf_estimation_backtracking | character | AnyImprovement | No, AnyImprovement, Armijo | - |
fold_len_multiplier | numeric | 2 | \([1.001, \infty)\) | |
approx_on_full_history | logical | TRUE | TRUE, FALSE | - |
class_weights | untyped | - | - | |
auto_class_weights | character | None | None, Balanced, SqrtBalanced | - |
boosting_type | character | - | Ordered, Plain | - |
boost_from_average | logical | - | TRUE, FALSE | - |
langevin | logical | FALSE | TRUE, FALSE | - |
diffusion_temperature | numeric | 10000 | \([0, \infty)\) | |
score_function | character | Cosine | Cosine, L2, NewtonCosine, NewtonL2 | - |
monotone_constraints | untyped | - | - | |
feature_weights | untyped | - | - | |
first_feature_use_penalties | untyped | - | - | |
penalties_coefficient | numeric | 1 | \([0, \infty)\) | |
per_object_feature_penalties | untyped | - | - | |
model_shrink_rate | numeric | - | \((-\infty, \infty)\) | |
model_shrink_mode | character | - | Constant, Decreasing | - |
target_border | numeric | - | \((-\infty, \infty)\) | |
border_count | integer | - | \([1, 65535]\) | |
feature_border_type | character | GreedyLogSum | Median, Uniform, UniformAndQuantiles, MaxLogSum, MinEntropy, GreedyLogSum | - |
per_float_feature_quantization | untyped | - | - | |
classes_count | integer | - | \([1, \infty)\) | |
thread_count | integer | 1 | \([-1, \infty)\) | |
task_type | character | CPU | CPU, GPU | - |
devices | untyped | - | - | |
logging_level | character | Silent | Silent, Verbose, Info, Debug | - |
metric_period | integer | 1 | \([1, \infty)\) | |
train_dir | untyped | "catboost_info" | - | |
model_size_reg | numeric | 0.5 | \([0, 1]\) | |
allow_writing_files | logical | FALSE | TRUE, FALSE | - |
save_snapshot | logical | FALSE | TRUE, FALSE | - |
snapshot_file | untyped | - | - | |
snapshot_interval | integer | 600 | \([1, \infty)\) | |
simple_ctr | untyped | - | - | |
combinations_ctr | untyped | - | - | |
ctr_target_border_count | integer | - | \([1, 255]\) | |
counter_calc_method | character | Full | SkipTest, Full | - |
max_ctr_complexity | integer | - | \([1, \infty)\) | |
ctr_leaf_count_limit | integer | - | \([1, \infty)\) | |
store_all_simple_ctr | logical | FALSE | TRUE, FALSE | - |
final_ctr_computation_mode | character | Default | Default, Skip | - |
verbose | logical | FALSE | TRUE, FALSE | - |
ntree_start | integer | 0 | \([0, \infty)\) | |
ntree_end | integer | 0 | \([0, \infty)\) | |
early_stopping_rounds | integer | - | \([1, \infty)\) | |
eval_metric | untyped | - | - | |
use_best_model | logical | - | TRUE, FALSE | - |
iterations | integer | 1000 | \([1, \infty)\) |
Initial parameter values
logging_level
:Actual default: "Verbose"
Adjusted default: "Silent"
Reason for change: consistent with other mlr3 learners
thread_count
:Actual default: -1
Adjusted default: 1
Reason for change: consistent with other mlr3 learners
allow_writing_files
:Actual default: TRUE
Adjusted default: FALSE
Reason for change: consistent with other mlr3 learners
save_snapshot
:Actual default: TRUE
Adjusted default: FALSE
Reason for change: consistent with other mlr3 learners
Early stopping
Early stopping can be used to find the optimal number of boosting rounds.
Set early_stopping_rounds
to an integer value to monitor the performance of the model on the validation set while training.
For information on how to configure the validation set, see the Validation section of mlr3::Learner
.
References
Dorogush, Veronika A, Ershov, Vasily, Gulin, Andrey (2018). “CatBoost: gradient boosting with categorical features support.” arXiv preprint arXiv:1810.11363.
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifCatboost
Active bindings
internal_valid_scores
The last observation of the validation scores for all metrics. Extracted from
model$evaluation_log
internal_tuned_values
Returns the early stopped iterations if
early_stopping_rounds
was set during training.validate
How to construct the internal validation data. This parameter can be either
NULL
, a ratio,"test"
, or"predefined"
.
Methods
Method importance()
The importance scores are calculated using
catboost.get_feature_importance
,
setting type = "FeatureImportance"
, returned for 'all'.
Returns
Named numeric()
.
Examples
# Define the Learner
learner = mlr3::lrn("classif.catboost",
iterations = 100)
print(learner)
#> <LearnerClassifCatboost:classif.catboost>: Gradient Boosting
#> * Model: -
#> * Parameters: loss_function_twoclass=Logloss,
#> loss_function_multiclass=MultiClass, thread_count=1,
#> logging_level=Silent, allow_writing_files=FALSE, save_snapshot=FALSE,
#> iterations=100
#> * Validate: NULL
#> * Packages: mlr3, mlr3extralearners, catboost
#> * Predict Types: [response], prob
#> * Feature Types: numeric, factor, ordered
#> * Properties: importance, internal_tuning, missings, multiclass,
#> twoclass, validation, weights
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> CatBoost model (100 trees)
#> Loss function: Logloss
#> Fit to 60 feature(s)
print(learner$importance())
#> V12 V11 V36 V48 V17 V47 V37 V32
#> 7.4026224 6.9625901 6.3720110 5.4590317 3.1837522 2.9517727 2.8506295 2.6557847
#> V46 V45 V10 V44 V49 V4 V51 V43
#> 2.6510963 2.5986228 2.5749898 2.3994208 2.2918855 2.2085148 2.0071865 1.9621251
#> V23 V26 V21 V27 V28 V55 V19 V41
#> 1.9585355 1.9264205 1.8104164 1.7151764 1.5388855 1.5319991 1.5242296 1.4612630
#> V20 V15 V40 V31 V59 V38 V5 V14
#> 1.4178004 1.3708217 1.3604690 1.2779841 1.2484723 1.2242690 1.2167448 1.2037284
#> V9 V52 V54 V7 V6 V8 V16 V53
#> 1.1899732 1.1491968 1.0009854 0.9918043 0.9238501 0.9179007 0.8925443 0.8708020
#> V50 V56 V39 V35 V34 V29 V18 V58
#> 0.8586075 0.8290424 0.8073082 0.7989067 0.7445269 0.7255189 0.7092765 0.7046859
#> V13 V22 V1 V57 V25 V24 V2 V60
#> 0.6837392 0.6630338 0.6136435 0.5834675 0.5553414 0.5509879 0.4939978 0.4288632
#> V3 V42 V33 V30
#> 0.3219551 0.2951832 0.2089709 0.1666351
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.1304348