Gradient Boosted Decision Trees Classification Learner
Source:R/learner_catboost_classif_catboost.R
mlr_learners_classif.catboost.RdGradient boosting algorithm that also supports categorical data.
Calls catboost::catboost.train() from package 'catboost'.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, catboost
Parameters
| Id | Type | Default | Levels | Range |
| loss_function_twoclass | character | Logloss | Logloss, CrossEntropy | - |
| loss_function_multiclass | character | MultiClass | MultiClass, MultiClassOneVsAll | - |
| learning_rate | numeric | 0.03 | \([0.001, 1]\) | |
| random_seed | integer | 0 | \([0, \infty)\) | |
| l2_leaf_reg | numeric | 3 | \([0, \infty)\) | |
| bootstrap_type | character | - | Bayesian, Bernoulli, MVS, Poisson, No | - |
| bagging_temperature | numeric | 1 | \([0, \infty)\) | |
| subsample | numeric | - | \([0, 1]\) | |
| sampling_frequency | character | PerTreeLevel | PerTree, PerTreeLevel | - |
| sampling_unit | character | Object | Object, Group | - |
| mvs_reg | numeric | - | \([0, \infty)\) | |
| random_strength | numeric | 1 | \([0, \infty)\) | |
| depth | integer | 6 | \([1, 16]\) | |
| grow_policy | character | SymmetricTree | SymmetricTree, Depthwise, Lossguide | - |
| min_data_in_leaf | integer | 1 | \([1, \infty)\) | |
| max_leaves | integer | 31 | \([1, \infty)\) | |
| ignored_features | untyped | NULL | - | |
| one_hot_max_size | untyped | FALSE | - | |
| has_time | logical | FALSE | TRUE, FALSE | - |
| rsm | numeric | 1 | \([0.001, 1]\) | |
| nan_mode | character | Min | Min, Max | - |
| fold_permutation_block | integer | - | \([1, 256]\) | |
| leaf_estimation_method | character | - | Newton, Gradient, Exact | - |
| leaf_estimation_iterations | integer | - | \([1, \infty)\) | |
| leaf_estimation_backtracking | character | AnyImprovement | No, AnyImprovement, Armijo | - |
| fold_len_multiplier | numeric | 2 | \([1.001, \infty)\) | |
| approx_on_full_history | logical | TRUE | TRUE, FALSE | - |
| class_weights | untyped | - | - | |
| auto_class_weights | character | None | None, Balanced, SqrtBalanced | - |
| boosting_type | character | - | Ordered, Plain | - |
| boost_from_average | logical | - | TRUE, FALSE | - |
| langevin | logical | FALSE | TRUE, FALSE | - |
| diffusion_temperature | numeric | 10000 | \([0, \infty)\) | |
| score_function | character | Cosine | Cosine, L2, NewtonCosine, NewtonL2 | - |
| monotone_constraints | untyped | - | - | |
| feature_weights | untyped | - | - | |
| first_feature_use_penalties | untyped | - | - | |
| penalties_coefficient | numeric | 1 | \([0, \infty)\) | |
| per_object_feature_penalties | untyped | - | - | |
| model_shrink_rate | numeric | - | \((-\infty, \infty)\) | |
| model_shrink_mode | character | - | Constant, Decreasing | - |
| target_border | numeric | - | \((-\infty, \infty)\) | |
| border_count | integer | - | \([1, 65535]\) | |
| feature_border_type | character | GreedyLogSum | Median, Uniform, UniformAndQuantiles, MaxLogSum, MinEntropy, GreedyLogSum | - |
| per_float_feature_quantization | untyped | - | - | |
| classes_count | integer | - | \([1, \infty)\) | |
| thread_count | integer | 1 | \([-1, \infty)\) | |
| task_type | character | CPU | CPU, GPU | - |
| devices | untyped | - | - | |
| logging_level | character | Silent | Silent, Verbose, Info, Debug | - |
| metric_period | integer | 1 | \([1, \infty)\) | |
| train_dir | untyped | "catboost_info" | - | |
| model_size_reg | numeric | 0.5 | \([0, 1]\) | |
| allow_writing_files | logical | FALSE | TRUE, FALSE | - |
| save_snapshot | logical | FALSE | TRUE, FALSE | - |
| snapshot_file | untyped | - | - | |
| snapshot_interval | integer | 600 | \([1, \infty)\) | |
| simple_ctr | untyped | - | - | |
| combinations_ctr | untyped | - | - | |
| ctr_target_border_count | integer | - | \([1, 255]\) | |
| counter_calc_method | character | Full | SkipTest, Full | - |
| max_ctr_complexity | integer | - | \([1, \infty)\) | |
| ctr_leaf_count_limit | integer | - | \([1, \infty)\) | |
| store_all_simple_ctr | logical | FALSE | TRUE, FALSE | - |
| final_ctr_computation_mode | character | Default | Default, Skip | - |
| verbose | logical | FALSE | TRUE, FALSE | - |
| ntree_start | integer | 0 | \([0, \infty)\) | |
| ntree_end | integer | 0 | \([0, \infty)\) | |
| early_stopping_rounds | integer | - | \([1, \infty)\) | |
| eval_metric | untyped | - | - | |
| use_best_model | logical | - | TRUE, FALSE | - |
| iterations | integer | 1000 | \([1, \infty)\) |
Initial parameter values
logging_level:Actual default: "Verbose"
Adjusted default: "Silent"
Reason for change: consistent with other mlr3 learners
thread_count:Actual default: -1
Adjusted default: 1
Reason for change: consistent with other mlr3 learners
allow_writing_files:Actual default: TRUE
Adjusted default: FALSE
Reason for change: consistent with other mlr3 learners
save_snapshot:Actual default: TRUE
Adjusted default: FALSE
Reason for change: consistent with other mlr3 learners
Early stopping
Early stopping can be used to find the optimal number of boosting rounds.
Set early_stopping_rounds to an integer value to monitor the performance of the model on the validation set while training.
For information on how to configure the validation set, see the Validation section of mlr3::Learner.
References
Dorogush, Veronika A, Ershov, Vasily, Gulin, Andrey (2018). “CatBoost: gradient boosting with categorical features support.” arXiv preprint arXiv:1810.11363.
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifCatboost
Active bindings
internal_valid_scoresThe last observation of the validation scores for all metrics. Extracted from
model$evaluation_loginternal_tuned_valuesReturns the early stopped iterations if
early_stopping_roundswas set during training.validateHow to construct the internal validation data. This parameter can be either
NULL, a ratio,"test", or"predefined".
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Method importance()
The importance scores are calculated using
catboost::catboost.get_feature_importance(),
setting type = "FeatureImportance", returned for 'all'.
Returns
Named numeric().
Examples
# Define the Learner
learner = lrn("classif.catboost")
print(learner)
#>
#> ── <LearnerClassifCatboost> (classif.catboost): Gradient Boosting ──────────────
#> • Model: -
#> • Parameters: loss_function_twoclass=Logloss,
#> loss_function_multiclass=MultiClass, thread_count=1, logging_level=Silent,
#> allow_writing_files=FALSE, save_snapshot=FALSE
#> • Validate: NULL
#> • Packages: mlr3, mlr3extralearners, and catboost
#> • Predict Types: [response] and prob
#> • Feature Types: numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, internal_tuning, missings, multiclass, twoclass,
#> validation, and weights
#> • Other settings: use_weights = 'use'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> CatBoost model (1000 trees)
#> Loss function: Logloss
#> Fit to 60 feature(s)
print(learner$importance())
#> V11 V48 V12 V4 V49 V28 V36 V13
#> 8.6530351 4.8288852 4.6486352 3.9059753 3.4610327 3.4059687 3.3820078 3.2854925
#> V9 V27 V16 V47 V20 V21 V39 V37
#> 3.0793247 2.8053404 2.3330848 2.2871508 2.2618606 2.2109455 2.1880184 1.8830878
#> V17 V52 V43 V45 V29 V51 V46 V23
#> 1.8262063 1.7430704 1.6197335 1.5914369 1.5497583 1.5464912 1.5370276 1.4563905
#> V26 V31 V59 V55 V10 V32 V15 V1
#> 1.4321003 1.3605685 1.3594862 1.3479737 1.2957126 1.1471920 1.1325616 1.0749990
#> V53 V58 V14 V18 V60 V42 V33 V57
#> 1.0720086 1.0517964 1.0397222 1.0181008 1.0176749 0.9792318 0.9174857 0.8861993
#> V40 V8 V30 V38 V6 V54 V25 V35
#> 0.8830457 0.8799004 0.8771126 0.8692596 0.8597371 0.8410322 0.8393296 0.8088684
#> V19 V24 V44 V5 V2 V22 V50 V7
#> 0.7668132 0.7639119 0.7580799 0.6909821 0.6894752 0.6825773 0.6000329 0.5558185
#> V34 V41 V56 V3
#> 0.5184849 0.5107203 0.4968237 0.4852204
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.1014493