Classification Diagonal Linear Discriminant Analysis Learner
Source:R/learner_sparsediscrim_classif_dlda.R
mlr_learners_classif.dlda.Rd
Diagonal Linear Discriminant Analysis classifier.
Belongs to the family of Naive Bayes classifiers, where the distributions of
each class are assumed to be multivariate normal and to share a common
covariance matrix. Off-diagonal elements of the pooled sample covariance matrix
are set to zero
Calls sparsediscrim::lda_diag()
from sparsediscrim.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “integer”, “numeric”
Required Packages: mlr3, sparsediscrim
References
Dudoit S, Fridlyand J, Speed TP (2002). “Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data.” Journal of the American Statistical Association, 97(457), 77–87. doi:10.1198/016214502753479248 .
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifDiagLda
Methods
Inherited methods
mlr3::Learner$base_learner()
mlr3::Learner$configure()
mlr3::Learner$encapsulate()
mlr3::Learner$format()
mlr3::Learner$help()
mlr3::Learner$predict()
mlr3::Learner$predict_newdata()
mlr3::Learner$print()
mlr3::Learner$reset()
mlr3::Learner$selected_features()
mlr3::Learner$train()
mlr3::LearnerClassif$predict_newdata_fast()
Examples
# Define the Learner
learner = lrn("classif.dlda")
print(learner)
#>
#> ── <LearnerClassifDiagLda> (classif.dlda): Diagonal Linear Discriminant Analysis
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and sparsediscrim
#> • Predict Types: [response] and prob
#> • Feature Types: integer and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: multiclass and twoclass
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> Diagonal LDA
#>
#> Sample Size: 139
#> Number of Features: 60
#>
#> Classes and Prior Probabilities:
#> M (57.55%), R (42.45%)
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.2753623