Skip to contents

Gradient Boosting Classification Algorithm. Calls gbm::gbm() from gbm.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.gbm")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, gbm

Parameters

IdTypeDefaultLevelsRange
distributioncharacterbernoullibernoulli, adaboost, huberized, multinomial-
n.treesinteger100\([1, \infty)\)
interaction.depthinteger1\([1, \infty)\)
n.minobsinnodeinteger10\([1, \infty)\)
shrinkagenumeric0.001\([0, \infty)\)
bag.fractionnumeric0.5\([0, 1]\)
train.fractionnumeric1\([0, 1]\)
cv.foldsinteger0\((-\infty, \infty)\)
keep.datalogicalFALSETRUE, FALSE-
verboselogicalFALSETRUE, FALSE-
n.coresinteger1\((-\infty, \infty)\)
var.monotoneuntyped--

Initial parameter values

  • keep.data is initialized to FALSE to save memory.

  • n.cores is initialized to 1 to avoid conflicts with parallelization through future.

References

Friedman, H J (2002). “Stochastic gradient boosting.” Computational statistics & data analysis, 38(4), 367–378.

See also

Author

be-marc

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifGBM

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method importance()

The importance scores are extracted by gbm::relative.influence() from the model.

Usage

LearnerClassifGBM$importance()

Returns

Named numeric().


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifGBM$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = lrn("classif.gbm")
print(learner)
#> 
#> ── <LearnerClassifGBM> (classif.gbm): Gradient Boosting ────────────────────────
#> • Model: -
#> • Parameters: keep.data=FALSE, n.cores=1
#> • Packages: mlr3, mlr3extralearners, and gbm
#> • Predict Types: [response] and prob
#> • Feature Types: integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, missings, twoclass, and weights
#> • Other settings: use_weights = 'use'

# Define a Task
task = tsk("sonar")

# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
#> Distribution not specified, assuming bernoulli ...

print(learner$model)
#> gbm::gbm(formula = f, data = data, keep.data = FALSE, n.cores = 1L)
#> A gradient boosted model with bernoulli loss function.
#> 100 iterations were performed.
#> There were 60 predictors of which 39 had non-zero influence.
print(learner$importance())
#>        V11        V46        V10        V52         V5        V45        V27 
#> 16.2483217 11.5700205 11.0315189 10.8789099 10.6429114  9.6526027  4.0256690 
#>        V37        V49         V4        V24        V16         V9        V23 
#>  3.8170062  3.5372951  3.4906399  3.3095717  3.1978973  2.9424468  2.6678918 
#>        V59        V55        V43        V48        V13        V57        V28 
#>  2.5244781  2.3511284  2.2683582  2.1522904  2.1078110  1.5591072  1.2576822 
#>        V21        V44        V42        V51        V60         V7        V34 
#>  1.1818009  1.1771513  1.0168495  0.9809884  0.9058510  0.8886716  0.7994772 
#>        V32        V12        V17         V2        V19        V31        V39 
#>  0.7989515  0.7705167  0.7637213  0.7479460  0.7072198  0.6295345  0.4627280 
#>        V29        V26        V47        V36         V1        V14        V15 
#>  0.4588540  0.4114925  0.3913292  0.3536803  0.0000000  0.0000000  0.0000000 
#>        V18        V20        V22        V25         V3        V30        V33 
#>  0.0000000  0.0000000  0.0000000  0.0000000  0.0000000  0.0000000  0.0000000 
#>        V35        V38        V40        V41        V50        V53        V54 
#>  0.0000000  0.0000000  0.0000000  0.0000000  0.0000000  0.0000000  0.0000000 
#>        V56        V58         V6         V8 
#>  0.0000000  0.0000000  0.0000000  0.0000000 

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>  0.3333333