Skip to contents

Gradient Boosting Classification Algorithm. Calls gbm::gbm() from gbm.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.gbm")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, gbm

Parameters

IdTypeDefaultLevelsRange
distributioncharacterbernoullibernoulli, adaboost, huberized, multinomial-
n.treesinteger100\([1, \infty)\)
interaction.depthinteger1\([1, \infty)\)
n.minobsinnodeinteger10\([1, \infty)\)
shrinkagenumeric0.001\([0, \infty)\)
bag.fractionnumeric0.5\([0, 1]\)
train.fractionnumeric1\([0, 1]\)
cv.foldsinteger0\((-\infty, \infty)\)
keep.datalogicalFALSETRUE, FALSE-
verboselogicalFALSETRUE, FALSE-
n.coresinteger1\((-\infty, \infty)\)
var.monotoneuntyped--

Initial parameter values

  • keep.data is initialized to FALSE to save memory.

  • n.cores is initialized to 1 to avoid conflicts with parallelization through future.

References

Friedman, H J (2002). “Stochastic gradient boosting.” Computational statistics & data analysis, 38(4), 367–378.

See also

Author

be-marc

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifGBM

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method importance()

The importance scores are extracted by gbm::relative.influence() from the model.

Usage

LearnerClassifGBM$importance()

Returns

Named numeric().


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifGBM$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = lrn("classif.gbm")
print(learner)
#> 
#> ── <LearnerClassifGBM> (classif.gbm): Gradient Boosting ────────────────────────
#> • Model: -
#> • Parameters: keep.data=FALSE, n.cores=1
#> • Packages: mlr3, mlr3extralearners, and gbm
#> • Predict Types: [response] and prob
#> • Feature Types: integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, missings, twoclass, and weights
#> • Other settings: use_weights = 'use'

# Define a Task
task = tsk("sonar")

# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
#> Distribution not specified, assuming bernoulli ...

print(learner$model)
#> gbm::gbm(formula = f, data = data, keep.data = FALSE, n.cores = 1L)
#> A gradient boosted model with bernoulli loss function.
#> 100 iterations were performed.
#> There were 60 predictors of which 37 had non-zero influence.
print(learner$importance())
#>        V49        V12        V10        V51        V45        V37        V13 
#> 16.6479619 15.9615262 10.5291824  7.5737289  6.5621168  6.3238284  5.3873263 
#>         V1        V11        V48        V52        V28        V39        V23 
#>  5.0382873  4.9222090  4.8644190  4.3521052  4.0603801  3.5552844  3.5096539 
#>        V16        V27        V43        V19         V5        V21        V40 
#>  3.2030949  3.0969231  3.0516691  2.4590046  2.3474765  2.3429697  2.3165237 
#>        V46         V9        V17        V36        V14        V20        V31 
#>  2.2900250  1.9165820  1.6095117  1.3896681  1.1244149  1.0876963  0.9631864 
#>        V47        V32        V59        V44        V54        V34        V50 
#>  0.9061273  0.7587087  0.6915523  0.6743298  0.6599235  0.5273608  0.5167733 
#>        V18        V26        V15         V2        V22        V24        V25 
#>  0.4561121  0.3715702  0.0000000  0.0000000  0.0000000  0.0000000  0.0000000 
#>        V29         V3        V30        V33        V35        V38         V4 
#>  0.0000000  0.0000000  0.0000000  0.0000000  0.0000000  0.0000000  0.0000000 
#>        V41        V42        V53        V55        V56        V57        V58 
#>  0.0000000  0.0000000  0.0000000  0.0000000  0.0000000  0.0000000  0.0000000 
#>         V6        V60         V7         V8 
#>  0.0000000  0.0000000  0.0000000  0.0000000 

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>  0.2028986