Skip to contents

Gradient Boosting Classification Algorithm. Calls gbm::gbm() from gbm.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.gbm")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, gbm

Parameters

IdTypeDefaultLevelsRange
distributioncharacterbernoullibernoulli, adaboost, huberized, multinomial-
n.treesinteger100\([1, \infty)\)
interaction.depthinteger1\([1, \infty)\)
n.minobsinnodeinteger10\([1, \infty)\)
shrinkagenumeric0.001\([0, \infty)\)
bag.fractionnumeric0.5\([0, 1]\)
train.fractionnumeric1\([0, 1]\)
cv.foldsinteger0\((-\infty, \infty)\)
keep.datalogicalFALSETRUE, FALSE-
verboselogicalFALSETRUE, FALSE-
n.coresinteger1\((-\infty, \infty)\)
var.monotoneuntyped--

Initial parameter values

  • keep.data is initialized to FALSE to save memory.

  • n.cores is initialized to 1 to avoid conflicts with parallelization through future.

References

Friedman, H J (2002). “Stochastic gradient boosting.” Computational statistics & data analysis, 38(4), 367–378.

See also

Author

be-marc

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifGBM

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method importance()

The importance scores are extracted by gbm::relative.influence() from the model.

Usage

LearnerClassifGBM$importance()

Returns

Named numeric().


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifGBM$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = lrn("classif.gbm")
print(learner)
#> 
#> ── <LearnerClassifGBM> (classif.gbm): Gradient Boosting ────────────────────────
#> • Model: -
#> • Parameters: keep.data=FALSE, n.cores=1
#> • Packages: mlr3, mlr3extralearners, and gbm
#> • Predict Types: [response] and prob
#> • Feature Types: integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, missings, twoclass, and weights
#> • Other settings: use_weights = 'use'

# Define a Task
task = tsk("sonar")

# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
#> Distribution not specified, assuming bernoulli ...

print(learner$model)
#> gbm::gbm(formula = f, data = data, keep.data = FALSE, n.cores = 1L)
#> A gradient boosted model with bernoulli loss function.
#> 100 iterations were performed.
#> There were 60 predictors of which 40 had non-zero influence.
print(learner$importance())
#>        V12        V49        V36        V11         V9        V43        V45 
#> 15.0917098 12.9309313 10.7959702  8.6874860  8.6521340  8.4522744  7.2481421 
#>        V51        V27        V13        V31        V37        V20         V4 
#>  7.0785099  6.2831015  4.3682769  3.1936909  3.1655358  3.0648320  3.0646887 
#>        V28         V8        V32        V23        V42        V48        V34 
#>  2.1281287  2.0496935  2.0298064  2.0096744  1.9626303  1.8823146  1.6952520 
#>        V22        V39         V1        V16        V21         V6         V5 
#>  1.5991409  1.5035249  1.2848915  1.1179551  1.0730661  0.8999111  0.8593764 
#>        V18        V58        V33        V46        V60        V44        V59 
#>  0.8493133  0.8029852  0.7729713  0.7151925  0.6985434  0.6754525  0.6569099 
#>        V29        V52        V25        V55        V17        V10        V14 
#>  0.6419107  0.5328081  0.5003540  0.3738397  0.2502680  0.0000000  0.0000000 
#>        V15        V19         V2        V24        V26         V3        V30 
#>  0.0000000  0.0000000  0.0000000  0.0000000  0.0000000  0.0000000  0.0000000 
#>        V35        V38        V40        V41        V47        V50        V53 
#>  0.0000000  0.0000000  0.0000000  0.0000000  0.0000000  0.0000000  0.0000000 
#>        V54        V56        V57         V7 
#>  0.0000000  0.0000000  0.0000000  0.0000000 

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>  0.1594203