Gradient Boosting Classification Learner
Source:R/learner_gbm_classif_gbm.R
mlr_learners_classif.gbm.RdGradient Boosting Classification Algorithm.
Calls gbm::gbm() from gbm.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, gbm
Parameters
| Id | Type | Default | Levels | Range |
| distribution | character | bernoulli | bernoulli, adaboost, huberized, multinomial | - |
| n.trees | integer | 100 | \([1, \infty)\) | |
| interaction.depth | integer | 1 | \([1, \infty)\) | |
| n.minobsinnode | integer | 10 | \([1, \infty)\) | |
| shrinkage | numeric | 0.001 | \([0, \infty)\) | |
| bag.fraction | numeric | 0.5 | \([0, 1]\) | |
| train.fraction | numeric | 1 | \([0, 1]\) | |
| cv.folds | integer | 0 | \((-\infty, \infty)\) | |
| keep.data | logical | FALSE | TRUE, FALSE | - |
| verbose | logical | FALSE | TRUE, FALSE | - |
| n.cores | integer | 1 | \((-\infty, \infty)\) | |
| var.monotone | untyped | - | - |
Initial parameter values
keep.datais initialized toFALSEto save memory.n.coresis initialized to 1 to avoid conflicts with parallelization through future.
References
Friedman, H J (2002). “Stochastic gradient boosting.” Computational statistics & data analysis, 38(4), 367–378.
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifGBM
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Method importance()
The importance scores are extracted by gbm::relative.influence() from
the model.
Returns
Named numeric().
Examples
# Define the Learner
learner = lrn("classif.gbm")
print(learner)
#>
#> ── <LearnerClassifGBM> (classif.gbm): Gradient Boosting ────────────────────────
#> • Model: -
#> • Parameters: keep.data=FALSE, n.cores=1
#> • Packages: mlr3, mlr3extralearners, and gbm
#> • Predict Types: [response] and prob
#> • Feature Types: integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, missings, twoclass, and weights
#> • Other settings: use_weights = 'use'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
#> Distribution not specified, assuming bernoulli ...
print(learner$model)
#> gbm::gbm(formula = f, data = data, keep.data = FALSE, n.cores = 1L)
#> A gradient boosted model with bernoulli loss function.
#> 100 iterations were performed.
#> There were 60 predictors of which 37 had non-zero influence.
print(learner$importance())
#> V49 V12 V10 V51 V45 V37 V13
#> 16.6479619 15.9615262 10.5291824 7.5737289 6.5621168 6.3238284 5.3873263
#> V1 V11 V48 V52 V28 V39 V23
#> 5.0382873 4.9222090 4.8644190 4.3521052 4.0603801 3.5552844 3.5096539
#> V16 V27 V43 V19 V5 V21 V40
#> 3.2030949 3.0969231 3.0516691 2.4590046 2.3474765 2.3429697 2.3165237
#> V46 V9 V17 V36 V14 V20 V31
#> 2.2900250 1.9165820 1.6095117 1.3896681 1.1244149 1.0876963 0.9631864
#> V47 V32 V59 V44 V54 V34 V50
#> 0.9061273 0.7587087 0.6915523 0.6743298 0.6599235 0.5273608 0.5167733
#> V18 V26 V15 V2 V22 V24 V25
#> 0.4561121 0.3715702 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> V29 V3 V30 V33 V35 V38 V4
#> 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> V41 V42 V53 V55 V56 V57 V58
#> 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> V6 V60 V7 V8
#> 0.0000000 0.0000000 0.0000000 0.0000000
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.2028986