Gradient Boosting Classification Learner
mlr_learners_classif.gbm.Rd
Gradient Boosting Classification Algorithm.
Calls gbm::gbm()
from gbm.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, gbm
Parameters
Id | Type | Default | Levels | Range |
distribution | character | bernoulli | bernoulli, adaboost, huberized, multinomial | - |
n.trees | integer | 100 | \([1, \infty)\) | |
interaction.depth | integer | 1 | \([1, \infty)\) | |
n.minobsinnode | integer | 10 | \([1, \infty)\) | |
shrinkage | numeric | 0.001 | \([0, \infty)\) | |
bag.fraction | numeric | 0.5 | \([0, 1]\) | |
train.fraction | numeric | 1 | \([0, 1]\) | |
cv.folds | integer | 0 | \((-\infty, \infty)\) | |
keep.data | logical | FALSE | TRUE, FALSE | - |
verbose | logical | FALSE | TRUE, FALSE | - |
n.cores | integer | 1 | \((-\infty, \infty)\) | |
var.monotone | untyped | - | - |
Initial parameter values
keep.data
is initialized toFALSE
to save memory.n.cores
is initialized to 1 to avoid conflicts with parallelization through future.
References
Friedman, H J (2002). “Stochastic gradient boosting.” Computational statistics & data analysis, 38(4), 367–378.
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifGBM
Methods
Method importance()
The importance scores are extracted by gbm::relative.influence()
from
the model.
Returns
Named numeric()
.
Examples
# Define the Learner
learner = mlr3::lrn("classif.gbm")
print(learner)
#> <LearnerClassifGBM:classif.gbm>: Gradient Boosting
#> * Model: -
#> * Parameters: keep.data=FALSE, n.cores=1
#> * Packages: mlr3, mlr3extralearners, gbm
#> * Predict Types: [response], prob
#> * Feature Types: integer, numeric, factor, ordered
#> * Properties: importance, missings, twoclass, weights
# Define a Task
task = mlr3::tsk("sonar")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
#> Distribution not specified, assuming bernoulli ...
print(learner$model)
#> gbm::gbm(formula = f, data = data, keep.data = FALSE, n.cores = 1L)
#> A gradient boosted model with bernoulli loss function.
#> 100 iterations were performed.
#> There were 60 predictors of which 39 had non-zero influence.
print(learner$importance())
#> V12 V11 V51 V9 V21 V31 V45
#> 29.4728987 14.9629418 7.5078636 6.3356787 6.2793804 5.7710149 5.1428466
#> V55 V10 V28 V39 V48 V52 V6
#> 4.4244161 4.0002885 3.9269659 3.4501218 2.9128867 2.5690208 2.4200955
#> V37 V46 V49 V36 V32 V16 V30
#> 2.4079741 2.3228991 2.0171334 1.9538189 1.8158379 1.7702282 1.6027697
#> V59 V20 V14 V25 V43 V23 V17
#> 1.5996724 1.5283937 1.4935879 1.4117956 1.2234849 1.1716289 1.0744113
#> V22 V40 V4 V57 V18 V24 V3
#> 1.0161028 0.9996231 0.9870299 0.8926060 0.8030597 0.5096552 0.4896064
#> V15 V2 V27 V35 V1 V13 V19
#> 0.4176411 0.3902425 0.3207355 0.2797585 0.0000000 0.0000000 0.0000000
#> V26 V29 V33 V34 V38 V41 V42
#> 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> V44 V47 V5 V50 V53 V54 V56
#> 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> V58 V60 V7 V8
#> 0.0000000 0.0000000 0.0000000 0.0000000
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.2463768