Classification Imbalanced Random Forest Src Learner
Source:R/learner_randomForestSRC_classif_imbalanced_rfsrc.R
mlr_learners_classif.imbalanced_rfsrc.RdImbalanced Random forest for classification between two classes.
Calls randomForestSRC::imbalanced.rfsrc() from from randomForestSRC.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, randomForestSRC
Parameters
| Id | Type | Default | Levels | Range |
| ntree | integer | 500 | \([1, \infty)\) | |
| method | character | rfq | rfq, brf, standard | - |
| block.size | integer | 10 | \([1, \infty)\) | |
| fast | logical | FALSE | TRUE, FALSE | - |
| ratio | numeric | - | \([0, 1]\) | |
| mtry | integer | - | \([1, \infty)\) | |
| mtry.ratio | numeric | - | \([0, 1]\) | |
| nodesize | integer | 15 | \([1, \infty)\) | |
| nodedepth | integer | - | \([1, \infty)\) | |
| splitrule | character | gini | gini, auc, entropy | - |
| nsplit | integer | 10 | \([0, \infty)\) | |
| importance | character | FALSE | FALSE, TRUE, none, permute, random, anti | - |
| bootstrap | character | by.root | by.root, by.node, none, by.user | - |
| samptype | character | swor | swor, swr | - |
| samp | untyped | - | - | |
| membership | logical | FALSE | TRUE, FALSE | - |
| sampsize | untyped | - | - | |
| sampsize.ratio | numeric | - | \([0, 1]\) | |
| na.action | character | na.omit | na.omit, na.impute | - |
| nimpute | integer | 1 | \([1, \infty)\) | |
| ntime | integer | - | \([1, \infty)\) | |
| proximity | character | FALSE | FALSE, TRUE, inbag, oob, all | - |
| distance | character | FALSE | FALSE, TRUE, inbag, oob, all | - |
| forest.wt | character | FALSE | FALSE, TRUE, inbag, oob, all | - |
| xvar.wt | untyped | - | - | |
| split.wt | untyped | - | - | |
| forest | logical | TRUE | TRUE, FALSE | - |
| var.used | character | FALSE | FALSE, all.trees | - |
| split.depth | character | FALSE | FALSE, all.trees | - |
| seed | integer | - | \((-\infty, -1]\) | |
| do.trace | logical | FALSE | TRUE, FALSE | - |
| get.tree | untyped | - | - | |
| outcome | character | train | train, test | - |
| ptn.count | integer | 0 | \([0, \infty)\) | |
| cores | integer | 1 | \([1, \infty)\) | |
| save.memory | logical | FALSE | TRUE, FALSE | - |
| perf.type | character | - | gmean, misclass, brier, none | - |
| case.depth | logical | FALSE | TRUE, FALSE | - |
| marginal.xvar | untyped | NULL | - |
Custom mlr3 parameters
mtry: This hyperparameter can alternatively be set via the added hyperparametermtry.ratioasmtry = max(ceiling(mtry.ratio * n_features), 1). Note thatmtryandmtry.ratioare mutually exclusive.sampsize: This hyperparameter can alternatively be set via the added hyperparametersampsize.ratioassampsize = max(ceiling(sampsize.ratio * n_obs), 1). Note thatsampsizeandsampsize.ratioare mutually exclusive.cores: This value is set as the optionrf.coresduring training and is set to 1 by default.
References
O’Brien R, Ishwaran H (2019). “A random forests quantile classifier for class imbalanced data.” Pattern Recognition, 90, 232–249. doi:10.1016/j.patcog.2019.01.036 .
Chao C, Leo B (2004). “Using Random Forest to Learn Imbalanced Data.” University of California, Berkeley.
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifImbalancedRandomForestSRC
Methods
Inherited methods
Method importance()
The importance scores are extracted from the slot importance.
Returns
Named numeric().
Method selected_features()
Selected features are extracted from the model slot var.used.
Note: Due to a known issue in randomForestSRC, enabling var.used = "all.trees"
causes prediction to fail. Therefore, this setting should be used exclusively
for feature selection purposes and not when prediction is required.
Examples
# Define the Learner
learner = lrn("classif.imbalanced_rfsrc", importance = "TRUE")
print(learner)
#>
#> ── <LearnerClassifImbalancedRandomForestSRC> (classif.imbalanced_rfsrc): Imbalan
#> • Model: -
#> • Parameters: importance=TRUE
#> • Packages: mlr3 and randomForestSRC
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, missings, oob_error, selected_features, twoclass, and
#> weights
#> • Other settings: use_weights = 'use'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> Sample size: 139
#> Frequency of class labels: M=74, R=65
#> Number of trees: 3000
#> Forest terminal node size: 1
#> Average no. of terminal nodes: 16.2187
#> No. of variables tried at each split: 8
#> Total no. of variables: 60
#> Resampling used to grow trees: swor
#> Resample size used to grow trees: 88
#> Analysis: RFQ
#> Family: class
#> Splitting rule: auc *random*
#> Number of random split points: 10
#> Imbalanced ratio: 1.1385
#> (OOB) Brier score: 0.12201323
#> (OOB) Normalized Brier score: 0.48805292
#> (OOB) AUC: 0.94802495
#> (OOB) Log-loss: 0.40136102
#> (OOB) PR-AUC: 0.95047823
#> (OOB) G-mean: 0.86991767
#> (OOB) Requested performance error: 0.13008233
#>
#> Confusion matrix:
#>
#> predicted
#> observed M R class.error
#> M 70 4 0.0541
#> R 13 52 0.2000
#>
#> (OOB) Misclassification rate: 0.1223022
#>
#> Random-classifier baselines (uniform):
#> Brier: 0.25 Normalized Brier: 1 Log-loss: 0.69314718
print(learner$importance())
#> V51 V42 V47 V4 V12 V2
#> 0.025466541 0.014580995 0.014580995 0.012517454 0.010700797 0.008405199
#> V15 V16 V17 V18 V19 V24
#> 0.006236049 0.006236049 0.006236049 0.006236049 0.006236049 0.006236049
#> V27 V30 V32 V33 V34 V39
#> 0.006236049 0.006236049 0.006236049 0.006236049 0.006236049 0.006236049
#> V43 V46 V54 V8 V21 V5
#> 0.006236049 0.006236049 0.006236049 0.006236049 0.004312480 0.004312480
#> V13 V14 V26 V28 V29 V3
#> 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
#> V38 V45 V56 V7 V23 V36
#> 0.000000000 0.000000000 0.000000000 0.000000000 -0.002029035 -0.002029035
#> V40 V41 V52 V58 V44 V10
#> -0.002029035 -0.002029035 -0.002029035 -0.002029035 -0.006191663 -0.008324761
#> V25 V31 V35 V55 V57 V59
#> -0.008324761 -0.008324761 -0.008324761 -0.008324761 -0.008324761 -0.008324761
#> V6 V60 V9 V1 V20 V22
#> -0.008324761 -0.008324761 -0.008324761 -0.010216508 -0.010216508 -0.010216508
#> V37 V50 V53 V11 V48 V49
#> -0.010216508 -0.010216508 -0.010216508 -0.016571349 -0.018328515 -0.032838560
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.2173913