Classification Kernlab Support Vector Machine
mlr_learners_classif.ksvm.Rd
Support vector machine for classification.
Calls kernlab::ksvm()
from kernlab.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “character”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, kernlab
Parameters
Id | Type | Default | Levels | Range |
scaled | logical | TRUE | TRUE, FALSE | - |
type | character | C-svc | C-svc, nu-svc, C-bsvc, spoc-svc, kbb-svc | - |
kernel | character | rbfdot | rbfdot, polydot, vanilladot, laplacedot, besseldot, anovadot | - |
C | numeric | 1 | \((-\infty, \infty)\) | |
nu | numeric | 0.2 | \([0, \infty)\) | |
cache | integer | 40 | \([1, \infty)\) | |
tol | numeric | 0.001 | \([0, \infty)\) | |
shrinking | logical | TRUE | TRUE, FALSE | - |
sigma | numeric | - | \([0, \infty)\) | |
degree | integer | - | \([1, \infty)\) | |
scale | numeric | - | \([0, \infty)\) | |
order | integer | - | \((-\infty, \infty)\) | |
offset | numeric | - | \((-\infty, \infty)\) | |
coupler | character | minpair | minpair, pkpd | - |
References
Karatzoglou, Alexandros, Smola, Alex, Hornik, Kurt, Zeileis, Achim (2004). “kernlab-an S4 package for kernel methods in R.” Journal of statistical software, 11(9), 1–20.
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifKSVM
Examples
# Define the Learner
learner = mlr3::lrn("classif.ksvm")
print(learner)
#> <LearnerClassifKSVM:classif.ksvm>: Support Vector Machine
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3extralearners, kernlab
#> * Predict Types: [response], prob
#> * Feature Types: logical, integer, numeric, character, factor, ordered
#> * Properties: multiclass, twoclass, weights
# Define a Task
task = mlr3::tsk("sonar")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> Support Vector Machine object of class "ksvm"
#>
#> SV type: C-svc (classification)
#> parameter : cost C = 1
#>
#> Gaussian Radial Basis kernel function.
#> Hyperparameter : sigma = 0.0121390633331134
#>
#> Number of Support Vectors : 104
#>
#> Objective Function Value : -61.3055
#> Training error : 0.05036
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.1594203