Skip to contents

L2 regularized support vector classification. Calls LiblineaR::LiblineaR() from LiblineaR.

Details

Type of SVC depends on type argument:

  • 0 – L2-regularized logistic regression (primal)

  • 1 - L2-regularized L2-loss support vector classification (dual)

  • 3 - L2-regularized L1-loss support vector classification (dual)

  • 2 – L2-regularized L2-loss support vector classification (primal)

  • 4 – Support vector classification by Crammer and Singer

  • 5 - L1-regularized L2-loss support vector classification

  • 6 - L1-regularized logistic regression

  • 7 - L2-regularized logistic regression (dual)

If number of records > number of features, type = 2 is faster than type = 1 (Hsu et al. 2003).

Note that probabilistic predictions are only available for types 0, 6, and 7. The default epsilon value depends on the type parameter, see LiblineaR::LiblineaR.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.liblinear")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “numeric”

  • Required Packages: mlr3, mlr3extralearners, LiblineaR

Parameters

IdTypeDefaultLevelsRange
typeinteger0\([0, 7]\)
costnumeric1\([0, \infty)\)
epsilonnumeric-\([0, \infty)\)
biasnumeric1\((-\infty, \infty)\)
crossinteger0\([0, \infty)\)
verboselogicalFALSETRUE, FALSE-
wiuntypedNULL-
findClogicalFALSETRUE, FALSE-
useInitClogicalTRUETRUE, FALSE-

References

Fan, Rong-En, Chang, Kai-Wei, Hsieh, Cho-Jui, Wang, Xiang-Rui, Lin, Chih-Jen (2008). “LIBLINEAR: A library for large linear classification.” the Journal of machine Learning research, 9, 1871–1874.

See also

Author

be-marc

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifLiblineaR

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifLiblineaR$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = lrn("classif.liblinear")
print(learner)
#> 
#> ── <LearnerClassifLiblineaR> (classif.liblinear): Support Vector Machine ───────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3extralearners, and LiblineaR
#> • Predict Types: [response] and prob
#> • Feature Types: numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: multiclass and twoclass
#> • Other settings: use_weights = 'error'

# Define a Task
task = tsk("sonar")

# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> $TypeDetail
#> [1] "L2-regularized logistic regression primal (L2R_LR)"
#> 
#> $Type
#> [1] 0
#> 
#> $W
#>             V1       V10       V11      V12        V13       V14        V15
#> [1,] -0.234744 -0.517435 -1.345811 -1.17671 -0.4354364 0.2546746 0.05624612
#>            V16       V17       V18        V19         V2        V20        V21
#> [1,] 0.2931028 0.7451037 0.5698557 -0.4613368 -0.2045758 -0.4312297 -0.3683575
#>            V22        V23        V24       V25       V26         V27
#> [1,] -0.213751 -0.1863327 -0.4896226 0.3395411 0.3138516 -0.08750794
#>              V28       V29         V3         V30      V31       V32       V33
#> [1,] -0.07005958 0.0297242 -0.1388489 -0.04161825 0.838057 0.1111408 0.4193169
#>            V34       V35      V36      V37        V38        V39         V4
#> [1,] 0.6888342 0.3500761 1.058722 1.010942 -0.2382843 -0.6861159 -0.3684637
#>            V40        V41        V42       V43       V44       V45       V46
#> [1,] 0.1053328 0.08340402 -0.3647338 -1.030494 -1.216796 -1.381866 -1.129301
#>             V47        V48        V49         V5         V50         V51
#> [1,] -0.6117258 -0.4566779 -0.3224643 -0.2747085 -0.01957202 -0.09219968
#>              V52         V53         V54          V55        V56        V57
#> [1,] -0.08000997 -0.01950981 -0.02656751 -0.008152937 -0.0145089 0.02227805
#>              V58         V59       V6          V60        V7        V8
#> [1,] -0.02457818 -0.01799539 0.177015 -0.004561614 0.2106704 0.1642352
#>              V9      Bias
#> [1,] -0.2940891 0.6131805
#> 
#> $Bias
#> [1] 1
#> 
#> $ClassNames
#> [1] R M
#> Levels: M R
#> 
#> $NbClass
#> [1] 2
#> 
#> attr(,"class")
#> [1] "LiblineaR"


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>   0.173913