Skip to contents

L2 regularized support vector classification. Calls LiblineaR::LiblineaR() from LiblineaR.

Details

Type of SVC depends on type argument:

  • 0 – L2-regularized logistic regression (primal)

  • 1 - L2-regularized L2-loss support vector classification (dual)

  • 3 - L2-regularized L1-loss support vector classification (dual)

  • 2 – L2-regularized L2-loss support vector classification (primal)

  • 4 – Support vector classification by Crammer and Singer

  • 5 - L1-regularized L2-loss support vector classification

  • 6 - L1-regularized logistic regression

  • 7 - L2-regularized logistic regression (dual)

If number of records > number of features, type = 2 is faster than type = 1 (Hsu et al. 2003).

Note that probabilistic predictions are only available for types 0, 6, and 7. The default epsilon value depends on the type parameter, see LiblineaR::LiblineaR.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.liblinear")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “numeric”

  • Required Packages: mlr3, mlr3extralearners, LiblineaR

Parameters

IdTypeDefaultLevelsRange
typeinteger0\([0, 7]\)
costnumeric1\([0, \infty)\)
epsilonnumeric-\([0, \infty)\)
biasnumeric1\((-\infty, \infty)\)
crossinteger0\([0, \infty)\)
verboselogicalFALSETRUE, FALSE-
wiuntypedNULL-
findClogicalFALSETRUE, FALSE-
useInitClogicalTRUETRUE, FALSE-

References

Fan, Rong-En, Chang, Kai-Wei, Hsieh, Cho-Jui, Wang, Xiang-Rui, Lin, Chih-Jen (2008). “LIBLINEAR: A library for large linear classification.” the Journal of machine Learning research, 9, 1871–1874.

See also

Author

be-marc

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifLiblineaR

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifLiblineaR$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = mlr3::lrn("classif.liblinear")
print(learner)
#> 
#> ── <LearnerClassifLiblineaR> (classif.liblinear): Support Vector Machine ───────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3extralearners, and LiblineaR
#> • Predict Types: [response] and prob
#> • Feature Types: numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: multiclass and twoclass
#> • Other settings: use_weights = 'error'

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> $TypeDetail
#> [1] "L2-regularized logistic regression primal (L2R_LR)"
#> 
#> $Type
#> [1] 0
#> 
#> $W
#>              V1        V10       V11       V12        V13        V14       V15
#> [1,] -0.2183621 -0.6474961 -1.299112 -1.298609 -0.6282325 -0.1365652 0.5408337
#>            V16      V17       V18        V19         V2       V20        V21
#> [1,] 0.8776686 0.601295 0.3791302 -0.4126841 -0.2637657 -0.499827 -0.4083421
#>             V22        V23        V24        V25       V26       V27        V28
#> [1,] -0.2846932 -0.1301443 -0.3574593 0.07587691 0.2037391 0.1543308 -0.1571337
#>             V29        V3       V30      V31        V32       V33       V34
#> [1,] -0.3848345 -0.293918 0.2300199 0.932342 0.07929383 0.2574891 0.5289741
#>            V35      V36       V37        V38        V39         V4        V40
#> [1,] 0.3615443 1.200544 0.9044874 0.05646742 -0.2011303 -0.4487245 0.07527176
#>             V41        V42       V43       V44       V45       V46        V47
#> [1,] -0.1899396 -0.7574382 -1.038391 -1.071928 -1.252801 -1.107702 -0.5241568
#>             V48       V49         V5        V50         V51         V52
#> [1,] -0.4048851 -0.302368 -0.3792321 0.01082561 -0.06077661 -0.06312935
#>              V53         V54          V55         V56        V57         V58
#> [1,] -0.04410516 -0.04753459 -0.003603085 -0.03084805 0.02972849 -0.03923797
#>              V59        V6         V60         V7         V8         V9
#> [1,] -0.03982874 -0.184203 -0.01296664 0.06907326 -0.1118595 -0.6713402
#>           Bias
#> [1,] 0.8126985
#> 
#> $Bias
#> [1] 1
#> 
#> $ClassNames
#> [1] R M
#> Levels: M R
#> 
#> $NbClass
#> [1] 2
#> 
#> attr(,"class")
#> [1] "LiblineaR"


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>  0.3188406