Skip to contents

L2 regularized support vector classification. Calls LiblineaR::LiblineaR() from LiblineaR.

Details

Type of SVC depends on type argument:

  • 0 – L2-regularized logistic regression (primal)

  • 1 - L2-regularized L2-loss support vector classification (dual)

  • 3 - L2-regularized L1-loss support vector classification (dual)

  • 2 – L2-regularized L2-loss support vector classification (primal)

  • 4 – Support vector classification by Crammer and Singer

  • 5 - L1-regularized L2-loss support vector classification

  • 6 - L1-regularized logistic regression

  • 7 - L2-regularized logistic regression (dual)

If number of records > number of features, type = 2 is faster than type = 1 (Hsu et al. 2003).

Note that probabilistic predictions are only available for types 0, 6, and 7. The default epsilon value depends on the type parameter, see LiblineaR::LiblineaR.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.liblinear")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “numeric”

  • Required Packages: mlr3, mlr3extralearners, LiblineaR

Parameters

IdTypeDefaultLevelsRange
typeinteger0\([0, 7]\)
costnumeric1\([0, \infty)\)
epsilonnumeric-\([0, \infty)\)
biasnumeric1\((-\infty, \infty)\)
crossinteger0\([0, \infty)\)
verboselogicalFALSETRUE, FALSE-
wiuntypedNULL-
findClogicalFALSETRUE, FALSE-
useInitClogicalTRUETRUE, FALSE-

References

Fan, Rong-En, Chang, Kai-Wei, Hsieh, Cho-Jui, Wang, Xiang-Rui, Lin, Chih-Jen (2008). “LIBLINEAR: A library for large linear classification.” the Journal of machine Learning research, 9, 1871–1874.

See also

Author

be-marc

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifLiblineaR

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifLiblineaR$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = lrn("classif.liblinear")
print(learner)
#> 
#> ── <LearnerClassifLiblineaR> (classif.liblinear): Support Vector Machine ───────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3extralearners, and LiblineaR
#> • Predict Types: [response] and prob
#> • Feature Types: numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: multiclass and twoclass
#> • Other settings: use_weights = 'error'

# Define a Task
task = tsk("sonar")

# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> $TypeDetail
#> [1] "L2-regularized logistic regression primal (L2R_LR)"
#> 
#> $Type
#> [1] 0
#> 
#> $W
#>              V1       V10       V11        V12        V13        V14      V15
#> [1,] -0.2353068 -1.203776 -1.225269 -0.8346892 -0.4758524 0.08982256 0.374807
#>            V16      V17       V18        V19         V2         V20        V21
#> [1,] 0.5861996 0.632761 0.4316318 -0.1947939 -0.2549279 -0.07565554 -0.6268232
#>             V22        V23        V24       V25       V26       V27        V28
#> [1,] -0.7056485 -0.3184743 -0.1501823 0.4025703 0.4477126 0.3727643 -0.1646018
#>            V29         V3        V30       V31        V32         V33       V34
#> [1,] -0.163435 -0.1204983 0.03941912 0.5751786 -0.2263718 -0.06424411 0.6082773
#>            V35       V36       V37        V38        V39         V4       V40
#> [1,] 0.5786418 0.9073868 0.6864244 0.09108388 0.01990784 -0.4754763 0.4656591
#>             V41        V42        V43       V44       V45       V46       V47
#> [1,] -0.1382393 -0.4778622 -0.7315803 -1.026607 -1.194908 -1.038226 -0.868647
#>             V48        V49         V5         V50       V51        V52
#> [1,] -0.8149444 -0.4375385 -0.4616548 -0.03385029 -0.104989 -0.1160945
#>             V53         V54        V55         V56         V57         V58
#> [1,] -0.0433117 -0.03530205 0.01038435 -0.01823764 0.008395964 -0.03305892
#>              V59         V6         V60          V7         V8         V9
#> [1,] -0.05655182 -0.2087996 -0.01904179 -0.07591636 0.03234561 -0.8050596
#>           Bias
#> [1,] 0.5762085
#> 
#> $Bias
#> [1] 1
#> 
#> $ClassNames
#> [1] R M
#> Levels: M R
#> 
#> $NbClass
#> [1] 2
#> 
#> attr(,"class")
#> [1] "LiblineaR"


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>  0.2028986