LiblineaR Classification Learner
mlr_learners_classif.liblinear.Rd
L2 regularized support vector classification.
Calls LiblineaR::LiblineaR()
from LiblineaR.
Details
Type of SVC depends on type
argument:
0
– L2-regularized logistic regression (primal)1
- L2-regularized L2-loss support vector classification (dual)3
- L2-regularized L1-loss support vector classification (dual)2
– L2-regularized L2-loss support vector classification (primal)4
– Support vector classification by Crammer and Singer5
- L1-regularized L2-loss support vector classification6
- L1-regularized logistic regression7
- L2-regularized logistic regression (dual)
If number of records > number of features, type = 2
is faster than type = 1
(Hsu et al. 2003).
Note that probabilistic predictions are only available for types 0
, 6
, and 7
.
The default epsilon
value depends on the type
parameter, see LiblineaR::LiblineaR.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “numeric”
Required Packages: mlr3, mlr3extralearners, LiblineaR
Parameters
Id | Type | Default | Levels | Range |
type | integer | 0 | \([0, 7]\) | |
cost | numeric | 1 | \([0, \infty)\) | |
epsilon | numeric | - | \([0, \infty)\) | |
bias | numeric | 1 | \((-\infty, \infty)\) | |
cross | integer | 0 | \([0, \infty)\) | |
verbose | logical | FALSE | TRUE, FALSE | - |
wi | untyped | NULL | - | |
findC | logical | FALSE | TRUE, FALSE | - |
useInitC | logical | TRUE | TRUE, FALSE | - |
References
Fan, Rong-En, Chang, Kai-Wei, Hsieh, Cho-Jui, Wang, Xiang-Rui, Lin, Chih-Jen (2008). “LIBLINEAR: A library for large linear classification.” the Journal of machine Learning research, 9, 1871–1874.
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifLiblineaR
Examples
# Define the Learner
learner = mlr3::lrn("classif.liblinear")
print(learner)
#> <LearnerClassifLiblineaR:classif.liblinear>: Support Vector Machine
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3extralearners, LiblineaR
#> * Predict Types: [response], prob
#> * Feature Types: numeric
#> * Properties: multiclass, twoclass
# Define a Task
task = mlr3::tsk("sonar")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> $TypeDetail
#> [1] "L2-regularized logistic regression primal (L2R_LR)"
#>
#> $Type
#> [1] 0
#>
#> $W
#> V1 V10 V11 V12 V13 V14 V15
#> [1,] -0.1761945 -0.6883583 -1.161462 -1.132633 -0.9460689 -0.2221559 0.3255642
#> V16 V17 V18 V19 V2 V20 V21
#> [1,] 0.492224 0.4666403 0.1210091 -0.1778262 -0.1946643 -0.3403365 -0.3146451
#> V22 V23 V24 V25 V26 V27 V28
#> [1,] -0.4617878 -0.2072104 0.0802367 0.4651989 0.1595801 0.1990467 -0.3569442
#> V29 V3 V30 V31 V32 V33
#> [1,] -0.3277779 -0.1557571 -0.09708273 0.8290949 -0.1276738 -0.08934766
#> V34 V35 V36 V37 V38 V39 V4
#> [1,] -0.05285389 0.3315771 1.005585 0.9544596 0.3212128 0.3149711 -0.4678879
#> V40 V41 V42 V43 V44 V45 V46
#> [1,] 0.5206119 -0.4239322 -0.59788 -0.9084501 -0.9707086 -1.320953 -1.049869
#> V47 V48 V49 V5 V50 V51
#> [1,] -0.5952131 -0.7521078 -0.5075994 -0.260191 -0.06642616 -0.09589624
#> V52 V53 V54 V55 V56 V57
#> [1,] -0.0631353 -0.01662665 -0.05864414 0.005677898 -0.03184213 0.01664206
#> V58 V59 V6 V60 V7 V8
#> [1,] -0.04406791 -0.03943128 -0.1315696 -0.03450268 -0.03710275 -0.06167273
#> V9 Bias
#> [1,] -0.5000886 1.04209
#>
#> $Bias
#> [1] 1
#>
#> $ClassNames
#> [1] R M
#> Levels: M R
#>
#> $NbClass
#> [1] 2
#>
#> attr(,"class")
#> [1] "LiblineaR"
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.2608696