Skip to contents

L2 regularized support vector classification. Calls LiblineaR::LiblineaR() from LiblineaR.

Details

Type of SVC depends on type argument:

  • 0 – L2-regularized logistic regression (primal)

  • 1 - L2-regularized L2-loss support vector classification (dual)

  • 3 - L2-regularized L1-loss support vector classification (dual)

  • 2 – L2-regularized L2-loss support vector classification (primal)

  • 4 – Support vector classification by Crammer and Singer

  • 5 - L1-regularized L2-loss support vector classification

  • 6 - L1-regularized logistic regression

  • 7 - L2-regularized logistic regression (dual)

If number of records > number of features, type = 2 is faster than type = 1 (Hsu et al. 2003).

Note that probabilistic predictions are only available for types 0, 6, and 7. The default epsilon value depends on the type parameter, see LiblineaR::LiblineaR.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.liblinear")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “numeric”

  • Required Packages: mlr3, mlr3extralearners, LiblineaR

Parameters

IdTypeDefaultLevelsRange
typeinteger0\([0, 7]\)
costnumeric1\([0, \infty)\)
epsilonnumeric-\([0, \infty)\)
biasnumeric1\((-\infty, \infty)\)
crossinteger0\([0, \infty)\)
verboselogicalFALSETRUE, FALSE-
wiuntypedNULL-
findClogicalFALSETRUE, FALSE-
useInitClogicalTRUETRUE, FALSE-

References

Fan, Rong-En, Chang, Kai-Wei, Hsieh, Cho-Jui, Wang, Xiang-Rui, Lin, Chih-Jen (2008). “LIBLINEAR: A library for large linear classification.” the Journal of machine Learning research, 9, 1871–1874.

See also

Author

be-marc

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifLiblineaR

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifLiblineaR$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = lrn("classif.liblinear")
print(learner)
#> 
#> ── <LearnerClassifLiblineaR> (classif.liblinear): Support Vector Machine ───────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3extralearners, and LiblineaR
#> • Predict Types: [response] and prob
#> • Feature Types: numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: multiclass and twoclass
#> • Other settings: use_weights = 'error'

# Define a Task
task = tsk("sonar")

# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> $TypeDetail
#> [1] "L2-regularized logistic regression primal (L2R_LR)"
#> 
#> $Type
#> [1] 0
#> 
#> $W
#>              V1       V10       V11       V12       V13         V14       V15
#> [1,] -0.1768986 -1.058908 -1.421981 -1.244183 -0.865417 -0.06536203 0.2970918
#>            V16       V17       V18       V19         V2        V20       V21
#> [1,] 0.6594645 0.3813312 0.4118508 0.2188616 -0.2988093 -0.3573865 -0.664273
#>             V22        V23        V24       V25       V26       V27        V28
#> [1,] -0.4834577 -0.5746338 -0.4219647 0.4108084 0.7569244 0.2423061 -0.2692147
#>             V29         V3        V30      V31       V32       V33       V34
#> [1,] -0.2650649 -0.1967415 -0.0132041 1.079531 0.1748149 -0.181889 0.3442846
#>            V35      V36       V37        V38        V39         V4       V40
#> [1,] 0.6810195 0.811687 0.5394729 0.01314381 0.05793032 -0.5264743 0.6914966
#>             V41        V42        V43        V44       V45       V46        V47
#> [1,] -0.1803882 -0.7793481 -0.7440174 -0.7573508 -1.216404 -1.263567 -0.6621086
#>             V48        V49         V5         V50        V51         V52
#> [1,] -0.5273007 -0.3705968 -0.4026559 -0.04037937 -0.1025706 -0.07515648
#>               V53         V54          V55         V56        V57         V58
#> [1,] -0.009574967 -0.03734022 -0.009304681 0.009498391 0.01627277 -0.03246306
#>             V59         V6         V60         V7         V8         V9
#> [1,] -0.0487425 -0.1220821 -0.01720797 -0.1839895 -0.1303842 -0.6736999
#>           Bias
#> [1,] 0.6338034
#> 
#> $Bias
#> [1] 1
#> 
#> $ClassNames
#> [1] R M
#> Levels: M R
#> 
#> $NbClass
#> [1] 2
#> 
#> attr(,"class")
#> [1] "LiblineaR"


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>  0.3043478