Skip to contents

L2 regularized support vector classification. Calls LiblineaR::LiblineaR() from LiblineaR.

Details

Type of SVC depends on type argument:

  • 0 – L2-regularized logistic regression (primal)

  • 1 - L2-regularized L2-loss support vector classification (dual)

  • 3 - L2-regularized L1-loss support vector classification (dual)

  • 2 – L2-regularized L2-loss support vector classification (primal)

  • 4 – Support vector classification by Crammer and Singer

  • 5 - L1-regularized L2-loss support vector classification

  • 6 - L1-regularized logistic regression

  • 7 - L2-regularized logistic regression (dual)

If number of records > number of features, type = 2 is faster than type = 1 (Hsu et al. 2003).

Note that probabilistic predictions are only available for types 0, 6, and 7. The default epsilon value depends on the type parameter, see LiblineaR::LiblineaR.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.liblinear")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “numeric”

  • Required Packages: mlr3, mlr3extralearners, LiblineaR

Parameters

IdTypeDefaultLevelsRange
typeinteger0\([0, 7]\)
costnumeric1\([0, \infty)\)
epsilonnumeric-\([0, \infty)\)
biasnumeric1\((-\infty, \infty)\)
crossinteger0\([0, \infty)\)
verboselogicalFALSETRUE, FALSE-
wiuntypedNULL-
findClogicalFALSETRUE, FALSE-
useInitClogicalTRUETRUE, FALSE-

References

Fan, Rong-En, Chang, Kai-Wei, Hsieh, Cho-Jui, Wang, Xiang-Rui, Lin, Chih-Jen (2008). “LIBLINEAR: A library for large linear classification.” the Journal of machine Learning research, 9, 1871–1874.

See also

Author

be-marc

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifLiblineaR

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifLiblineaR$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = mlr3::lrn("classif.liblinear")
print(learner)
#> <LearnerClassifLiblineaR:classif.liblinear>: Support Vector Machine
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3extralearners, LiblineaR
#> * Predict Types:  [response], prob
#> * Feature Types: numeric
#> * Properties: multiclass, twoclass

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> $TypeDetail
#> [1] "L2-regularized logistic regression primal (L2R_LR)"
#> 
#> $Type
#> [1] 0
#> 
#> $W
#>              V1        V10       V11       V12        V13        V14       V15
#> [1,] -0.1761945 -0.6883583 -1.161462 -1.132633 -0.9460689 -0.2221559 0.3255642
#>           V16       V17       V18        V19         V2        V20        V21
#> [1,] 0.492224 0.4666403 0.1210091 -0.1778262 -0.1946643 -0.3403365 -0.3146451
#>             V22        V23       V24       V25       V26       V27        V28
#> [1,] -0.4617878 -0.2072104 0.0802367 0.4651989 0.1595801 0.1990467 -0.3569442
#>             V29         V3         V30       V31        V32         V33
#> [1,] -0.3277779 -0.1557571 -0.09708273 0.8290949 -0.1276738 -0.08934766
#>              V34       V35      V36       V37       V38       V39         V4
#> [1,] -0.05285389 0.3315771 1.005585 0.9544596 0.3212128 0.3149711 -0.4678879
#>            V40        V41      V42        V43        V44       V45       V46
#> [1,] 0.5206119 -0.4239322 -0.59788 -0.9084501 -0.9707086 -1.320953 -1.049869
#>             V47        V48        V49        V5         V50         V51
#> [1,] -0.5952131 -0.7521078 -0.5075994 -0.260191 -0.06642616 -0.09589624
#>             V52         V53         V54         V55         V56        V57
#> [1,] -0.0631353 -0.01662665 -0.05864414 0.005677898 -0.03184213 0.01664206
#>              V58         V59         V6         V60          V7          V8
#> [1,] -0.04406791 -0.03943128 -0.1315696 -0.03450268 -0.03710275 -0.06167273
#>              V9    Bias
#> [1,] -0.5000886 1.04209
#> 
#> $Bias
#> [1] 1
#> 
#> $ClassNames
#> [1] R M
#> Levels: M R
#> 
#> $NbClass
#> [1] 2
#> 
#> attr(,"class")
#> [1] "LiblineaR"


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>  0.2608696