Skip to contents

L2 regularized support vector classification. Calls LiblineaR::LiblineaR() from LiblineaR.

Details

Type of SVC depends on type argument:

  • 0 – L2-regularized logistic regression (primal)

  • 1 - L2-regularized L2-loss support vector classification (dual)

  • 3 - L2-regularized L1-loss support vector classification (dual)

  • 2 – L2-regularized L2-loss support vector classification (primal)

  • 4 – Support vector classification by Crammer and Singer

  • 5 - L1-regularized L2-loss support vector classification

  • 6 - L1-regularized logistic regression

  • 7 - L2-regularized logistic regression (dual)

If number of records > number of features, type = 2 is faster than type = 1 (Hsu et al. 2003).

Note that probabilistic predictions are only available for types 0, 6, and 7. The default epsilon value depends on the type parameter, see LiblineaR::LiblineaR.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.liblinear")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “numeric”

  • Required Packages: mlr3, mlr3extralearners, LiblineaR

Parameters

IdTypeDefaultLevelsRange
typeinteger0\([0, 7]\)
costnumeric1\([0, \infty)\)
epsilonnumeric-\([0, \infty)\)
biasnumeric1\((-\infty, \infty)\)
crossinteger0\([0, \infty)\)
verboselogicalFALSETRUE, FALSE-
wiuntypedNULL-
findClogicalFALSETRUE, FALSE-
useInitClogicalTRUETRUE, FALSE-

References

Fan, Rong-En, Chang, Kai-Wei, Hsieh, Cho-Jui, Wang, Xiang-Rui, Lin, Chih-Jen (2008). “LIBLINEAR: A library for large linear classification.” the Journal of machine Learning research, 9, 1871–1874.

See also

Author

be-marc

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifLiblineaR

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifLiblineaR$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = lrn("classif.liblinear")
print(learner)
#> 
#> ── <LearnerClassifLiblineaR> (classif.liblinear): Support Vector Machine ───────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3extralearners, and LiblineaR
#> • Predict Types: [response] and prob
#> • Feature Types: numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: multiclass and twoclass
#> • Other settings: use_weights = 'error'

# Define a Task
task = tsk("sonar")

# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> $TypeDetail
#> [1] "L2-regularized logistic regression primal (L2R_LR)"
#> 
#> $Type
#> [1] 0
#> 
#> $W
#>              V1       V10       V11       V12        V13        V14       V15
#> [1,] -0.2437997 -1.022705 -1.317551 -1.227156 -0.8168451 0.01364313 0.1703769
#>           V16       V17       V18        V19         V2        V20        V21
#> [1,] 0.474323 0.6816792 0.5385082 -0.1114466 -0.3150776 -0.5178784 -0.5698096
#>             V22        V23         V24       V25        V26       V27
#> [1,] -0.5635777 -0.1529101 -0.03630544 0.2611511 0.08645583 0.1766171
#>             V28       V29         V3        V30       V31       V32        V33
#> [1,] -0.1272396 0.2798081 -0.2968016 -0.0667238 0.8194478 0.1137261 0.04347455
#>            V34       V35       V36       V37        V38        V39         V4
#> [1,] 0.3257662 0.4680116 0.8661218 0.8290506 0.03439302 -0.2494236 -0.5406566
#>            V40        V41        V42        V43        V44        V45      V46
#> [1,] 0.3281197 -0.4206693 -0.5662156 -0.5570105 -0.3730119 -0.9581884 -1.14604
#>             V47       V48        V49         V5         V50        V51
#> [1,] -0.6971912 -0.609725 -0.3598201 -0.4075838 -0.02730562 -0.1197949
#>              V52         V53         V54        V55         V56        V57
#> [1,] -0.09773212 -0.01797361 -0.07055005 0.01527151 0.001010305 0.01423561
#>              V58         V59         V6         V60         V7         V8
#> [1,] -0.02273499 -0.03949808 -0.0934703 -0.02501752 0.09081423 0.02042528
#>              V9      Bias
#> [1,] -0.7587272 0.7037232
#> 
#> $Bias
#> [1] 1
#> 
#> $ClassNames
#> [1] R M
#> Levels: M R
#> 
#> $NbClass
#> [1] 2
#> 
#> attr(,"class")
#> [1] "LiblineaR"


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>  0.2028986