Skip to contents

L2 regularized support vector classification. Calls LiblineaR::LiblineaR() from LiblineaR.

Details

Type of SVC depends on type argument:

  • 0 – L2-regularized logistic regression (primal)

  • 1 - L2-regularized L2-loss support vector classification (dual)

  • 3 - L2-regularized L1-loss support vector classification (dual)

  • 2 – L2-regularized L2-loss support vector classification (primal)

  • 4 – Support vector classification by Crammer and Singer

  • 5 - L1-regularized L2-loss support vector classification

  • 6 - L1-regularized logistic regression

  • 7 - L2-regularized logistic regression (dual)

If number of records > number of features, type = 2 is faster than type = 1 (Hsu et al. 2003).

Note that probabilistic predictions are only available for types 0, 6, and 7. The default epsilon value depends on the type parameter, see LiblineaR::LiblineaR.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.liblinear")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “numeric”

  • Required Packages: mlr3, mlr3extralearners, LiblineaR

Parameters

IdTypeDefaultLevelsRange
typeinteger0\([0, 7]\)
costnumeric1\([0, \infty)\)
epsilonnumeric-\([0, \infty)\)
biasnumeric1\((-\infty, \infty)\)
crossinteger0\([0, \infty)\)
verboselogicalFALSETRUE, FALSE-
wiuntypedNULL-
findClogicalFALSETRUE, FALSE-
useInitClogicalTRUETRUE, FALSE-

References

Fan, Rong-En, Chang, Kai-Wei, Hsieh, Cho-Jui, Wang, Xiang-Rui, Lin, Chih-Jen (2008). “LIBLINEAR: A library for large linear classification.” the Journal of machine Learning research, 9, 1871–1874.

See also

Author

be-marc

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifLiblineaR

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifLiblineaR$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = lrn("classif.liblinear")
print(learner)
#> 
#> ── <LearnerClassifLiblineaR> (classif.liblinear): Support Vector Machine ───────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3extralearners, and LiblineaR
#> • Predict Types: [response] and prob
#> • Feature Types: numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: multiclass and twoclass
#> • Other settings: use_weights = 'error'

# Define a Task
task = tsk("sonar")

# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> $TypeDetail
#> [1] "L2-regularized logistic regression primal (L2R_LR)"
#> 
#> $Type
#> [1] 0
#> 
#> $W
#>              V1       V10       V11       V12        V13        V14       V15
#> [1,] -0.2673971 -1.135802 -1.557414 -1.392151 -0.9950733 -0.2605251 0.3244585
#>            V16      V17       V18        V19         V2        V20        V21
#> [1,] 0.8086611 0.686329 0.4620416 0.01684933 -0.2583744 -0.6028898 -0.3300062
#>             V22        V23        V24       V25       V26    V27        V28
#> [1,] -0.3741718 -0.6803006 -0.3302789 0.4522698 0.4939875 0.2003 -0.3757566
#>             V29         V3       V30      V31        V32        V33      V34
#> [1,] -0.2839388 -0.2140518 0.2647031 0.889343 -0.1357035 0.04715627 0.505434
#>           V35       V36       V37        V38        V39         V4       V40
#> [1,] 0.710494 0.7539211 0.7764838 -0.4738739 -0.4346926 -0.4455943 0.5078341
#>              V41        V42        V43        V44        V45        V46
#> [1,] -0.01556652 -0.4356431 -0.6438711 -0.7094573 -0.9295028 -0.9793871
#>             V47        V48       V49         V5         V50        V51
#> [1,] -0.5907769 -0.4777402 -0.385454 -0.4936901 -0.05576146 -0.1052961
#>             V52         V53         V54          V55           V56        V57
#> [1,] -0.1079745 -0.05710152 -0.02024289 -0.004809585 -0.0006605559 0.03129372
#>              V58         V59         V6         V60          V7          V8
#> [1,] -0.03173095 -0.04503607 -0.1234914 -0.02524004 0.001440487 -0.03794376
#>              V9      Bias
#> [1,] -0.7355695 0.8054391
#> 
#> $Bias
#> [1] 1
#> 
#> $ClassNames
#> [1] R M
#> Levels: M R
#> 
#> $NbClass
#> [1] 2
#> 
#> attr(,"class")
#> [1] "LiblineaR"


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>  0.2463768