LiblineaR Classification Learner
Source:R/learner_LiblineaR_classif_liblinear.R
mlr_learners_classif.liblinear.Rd
L2 regularized support vector classification.
Calls LiblineaR::LiblineaR()
from LiblineaR.
Details
Type of SVC depends on type
argument:
0
– L2-regularized logistic regression (primal)1
- L2-regularized L2-loss support vector classification (dual)3
- L2-regularized L1-loss support vector classification (dual)2
– L2-regularized L2-loss support vector classification (primal)4
– Support vector classification by Crammer and Singer5
- L1-regularized L2-loss support vector classification6
- L1-regularized logistic regression7
- L2-regularized logistic regression (dual)
If number of records > number of features, type = 2
is faster than type = 1
(Hsu et al. 2003).
Note that probabilistic predictions are only available for types 0
, 6
, and 7
.
The default epsilon
value depends on the type
parameter, see LiblineaR::LiblineaR.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “numeric”
Required Packages: mlr3, mlr3extralearners, LiblineaR
Parameters
Id | Type | Default | Levels | Range |
type | integer | 0 | \([0, 7]\) | |
cost | numeric | 1 | \([0, \infty)\) | |
epsilon | numeric | - | \([0, \infty)\) | |
bias | numeric | 1 | \((-\infty, \infty)\) | |
cross | integer | 0 | \([0, \infty)\) | |
verbose | logical | FALSE | TRUE, FALSE | - |
wi | untyped | NULL | - | |
findC | logical | FALSE | TRUE, FALSE | - |
useInitC | logical | TRUE | TRUE, FALSE | - |
References
Fan, Rong-En, Chang, Kai-Wei, Hsieh, Cho-Jui, Wang, Xiang-Rui, Lin, Chih-Jen (2008). “LIBLINEAR: A library for large linear classification.” the Journal of machine Learning research, 9, 1871–1874.
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifLiblineaR
Methods
Inherited methods
mlr3::Learner$base_learner()
mlr3::Learner$configure()
mlr3::Learner$encapsulate()
mlr3::Learner$format()
mlr3::Learner$help()
mlr3::Learner$predict()
mlr3::Learner$predict_newdata()
mlr3::Learner$print()
mlr3::Learner$reset()
mlr3::Learner$selected_features()
mlr3::Learner$train()
mlr3::LearnerClassif$predict_newdata_fast()
Examples
# Define the Learner
learner = lrn("classif.liblinear")
print(learner)
#>
#> ── <LearnerClassifLiblineaR> (classif.liblinear): Support Vector Machine ───────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3extralearners, and LiblineaR
#> • Predict Types: [response] and prob
#> • Feature Types: numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: multiclass and twoclass
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> $TypeDetail
#> [1] "L2-regularized logistic regression primal (L2R_LR)"
#>
#> $Type
#> [1] 0
#>
#> $W
#> V1 V10 V11 V12 V13 V14 V15
#> [1,] -0.2673971 -1.135802 -1.557414 -1.392151 -0.9950733 -0.2605251 0.3244585
#> V16 V17 V18 V19 V2 V20 V21
#> [1,] 0.8086611 0.686329 0.4620416 0.01684933 -0.2583744 -0.6028898 -0.3300062
#> V22 V23 V24 V25 V26 V27 V28
#> [1,] -0.3741718 -0.6803006 -0.3302789 0.4522698 0.4939875 0.2003 -0.3757566
#> V29 V3 V30 V31 V32 V33 V34
#> [1,] -0.2839388 -0.2140518 0.2647031 0.889343 -0.1357035 0.04715627 0.505434
#> V35 V36 V37 V38 V39 V4 V40
#> [1,] 0.710494 0.7539211 0.7764838 -0.4738739 -0.4346926 -0.4455943 0.5078341
#> V41 V42 V43 V44 V45 V46
#> [1,] -0.01556652 -0.4356431 -0.6438711 -0.7094573 -0.9295028 -0.9793871
#> V47 V48 V49 V5 V50 V51
#> [1,] -0.5907769 -0.4777402 -0.385454 -0.4936901 -0.05576146 -0.1052961
#> V52 V53 V54 V55 V56 V57
#> [1,] -0.1079745 -0.05710152 -0.02024289 -0.004809585 -0.0006605559 0.03129372
#> V58 V59 V6 V60 V7 V8
#> [1,] -0.03173095 -0.04503607 -0.1234914 -0.02524004 0.001440487 -0.03794376
#> V9 Bias
#> [1,] -0.7355695 0.8054391
#>
#> $Bias
#> [1] 1
#>
#> $ClassNames
#> [1] R M
#> Levels: M R
#>
#> $NbClass
#> [1] 2
#>
#> attr(,"class")
#> [1] "LiblineaR"
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.2463768