Skip to contents

L2 regularized support vector classification. Calls LiblineaR::LiblineaR() from LiblineaR.

Details

Type of SVC depends on type argument:

  • 0 – L2-regularized logistic regression (primal)

  • 1 - L2-regularized L2-loss support vector classification (dual)

  • 3 - L2-regularized L1-loss support vector classification (dual)

  • 2 – L2-regularized L2-loss support vector classification (primal)

  • 4 – Support vector classification by Crammer and Singer

  • 5 - L1-regularized L2-loss support vector classification

  • 6 - L1-regularized logistic regression

  • 7 - L2-regularized logistic regression (dual)

If number of records > number of features, type = 2 is faster than type = 1 (Hsu et al. 2003).

Note that probabilistic predictions are only available for types 0, 6, and 7. The default epsilon value depends on the type parameter, see LiblineaR::LiblineaR.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.liblinear")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “numeric”

  • Required Packages: mlr3, mlr3extralearners, LiblineaR

Parameters

IdTypeDefaultLevelsRange
typeinteger0\([0, 7]\)
costnumeric1\([0, \infty)\)
epsilonnumeric-\([0, \infty)\)
biasnumeric1\((-\infty, \infty)\)
crossinteger0\([0, \infty)\)
verboselogicalFALSETRUE, FALSE-
wiuntypedNULL-
findClogicalFALSETRUE, FALSE-
useInitClogicalTRUETRUE, FALSE-

References

Fan, Rong-En, Chang, Kai-Wei, Hsieh, Cho-Jui, Wang, Xiang-Rui, Lin, Chih-Jen (2008). “LIBLINEAR: A library for large linear classification.” the Journal of machine Learning research, 9, 1871–1874.

See also

Author

be-marc

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifLiblineaR

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifLiblineaR$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = mlr3::lrn("classif.liblinear")
print(learner)
#> <LearnerClassifLiblineaR:classif.liblinear>: Support Vector Machine
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3extralearners, LiblineaR
#> * Predict Types:  [response], prob
#> * Feature Types: numeric
#> * Properties: multiclass, twoclass

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> $TypeDetail
#> [1] "L2-regularized logistic regression primal (L2R_LR)"
#> 
#> $Type
#> [1] 0
#> 
#> $W
#>              V1        V10       V11       V12        V13        V14       V15
#> [1,] -0.2359267 -0.5883306 -1.164059 -1.077985 -0.9210561 -0.1802632 0.1961176
#>            V16       V17       V18       V19         V2        V20        V21
#> [1,] 0.7466199 0.6127184 0.2582825 -0.166305 -0.1525858 -0.4393155 -0.5952148
#>             V22        V23        V24       V25       V26         V27
#> [1,] -0.4831395 -0.2333577 -0.1973378 0.1855562 0.3383474 -0.07650611
#>             V28        V29         V3       V30       V31        V32        V33
#> [1,] -0.3373088 -0.2426114 -0.1226121 0.1872752 0.8638037 0.03529088 0.04372964
#>            V34      V35      V36       V37        V38        V39         V4
#> [1,] 0.4654765 0.412879 1.218272 0.9541151 -0.1437078 -0.4314139 -0.3604356
#>            V40        V41        V42        V43        V44       V45        V46
#> [1,] 0.4391263 -0.1467797 -0.5505501 -0.7539188 -0.7096568 -1.104352 -0.9577218
#>             V47        V48        V49         V5         V50         V51
#> [1,] -0.5352261 -0.4755092 -0.3973583 -0.2461674 -0.03006921 -0.06150181
#>              V52         V53         V54        V55        V56        V57
#> [1,] -0.06215934 0.001543735 -0.02100852 0.01404257 0.01088743 0.02743659
#>              V58         V59        V6          V60        V7        V8
#> [1,] -0.03881094 -0.05086232 0.1831667 -0.008095374 0.2776996 0.1717077
#>              V9      Bias
#> [1,] -0.5185141 0.9688713
#> 
#> $Bias
#> [1] 1
#> 
#> $ClassNames
#> [1] R M
#> Levels: M R
#> 
#> $NbClass
#> [1] 2
#> 
#> attr(,"class")
#> [1] "LiblineaR"


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>  0.3188406