Skip to contents

L2 regularized support vector classification. Calls LiblineaR::LiblineaR() from LiblineaR.

Details

Type of SVC depends on type argument:

  • 0 – L2-regularized logistic regression (primal)

  • 1 - L2-regularized L2-loss support vector classification (dual)

  • 3 - L2-regularized L1-loss support vector classification (dual)

  • 2 – L2-regularized L2-loss support vector classification (primal)

  • 4 – Support vector classification by Crammer and Singer

  • 5 - L1-regularized L2-loss support vector classification

  • 6 - L1-regularized logistic regression

  • 7 - L2-regularized logistic regression (dual)

If number of records > number of features, type = 2 is faster than type = 1 (Hsu et al. 2003).

Note that probabilistic predictions are only available for types 0, 6, and 7. The default epsilon value depends on the type parameter, see LiblineaR::LiblineaR.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.liblinear")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “numeric”

  • Required Packages: mlr3, mlr3extralearners, LiblineaR

Parameters

IdTypeDefaultLevelsRange
typeinteger0\([0, 7]\)
costnumeric1\([0, \infty)\)
epsilonnumeric-\([0, \infty)\)
biasnumeric1\((-\infty, \infty)\)
crossinteger0\([0, \infty)\)
verboselogicalFALSETRUE, FALSE-
wiuntypedNULL-
findClogicalFALSETRUE, FALSE-
useInitClogicalTRUETRUE, FALSE-

References

Fan, Rong-En, Chang, Kai-Wei, Hsieh, Cho-Jui, Wang, Xiang-Rui, Lin, Chih-Jen (2008). “LIBLINEAR: A library for large linear classification.” the Journal of machine Learning research, 9, 1871–1874.

See also

Author

be-marc

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifLiblineaR

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifLiblineaR$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = lrn("classif.liblinear")
print(learner)
#> 
#> ── <LearnerClassifLiblineaR> (classif.liblinear): Support Vector Machine ───────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3extralearners, and LiblineaR
#> • Predict Types: [response] and prob
#> • Feature Types: numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: multiclass and twoclass
#> • Other settings: use_weights = 'error'

# Define a Task
task = tsk("sonar")

# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> $TypeDetail
#> [1] "L2-regularized logistic regression primal (L2R_LR)"
#> 
#> $Type
#> [1] 0
#> 
#> $W
#>              V1       V10       V11       V12        V13        V14       V15
#> [1,] -0.1519159 -1.143361 -1.347808 -1.098958 -0.4812061 0.04580602 0.6119652
#>            V16       V17       V18        V19         V2        V20        V21
#> [1,] 0.7873583 0.7912485 0.2713496 -0.5649701 -0.1810797 -0.7565839 -0.6139168
#>             V22        V23       V24       V25       V26        V27        V28
#> [1,] -0.5496761 -0.1360819 0.4048926 0.7196278 0.3648748 -0.4007248 -0.6442787
#>            V29         V3       V30       V31        V32         V33      V34
#> [1,] 0.2143849 -0.2325111 -0.113702 0.7696756 -0.1685791 -0.02478953 0.324437
#>            V35       V36       V37         V38         V39        V4       V40
#> [1,] 0.4620187 0.9816471 0.9047847 -0.09500681 -0.09256819 -0.562442 0.4057463
#>             V41        V42        V43        V44       V45        V46
#> [1,] -0.2649881 -0.2019474 -0.7677554 -0.9372733 -1.092924 -0.8215106
#>             V47        V48        V49         V5         V50         V51
#> [1,] -0.5753169 -0.5259808 -0.4458976 -0.3921349 -0.08861712 -0.09730037
#>             V52         V53         V54         V55          V56         V57
#> [1,] -0.1448295 -0.04618856 -0.06288017 -0.02647186 -0.005818155 -0.01333455
#>              V58         V59          V6        V60        V7          V8
#> [1,] -0.06533927 -0.04596348 -0.05679019 -0.0176348 0.1354811 -0.06729122
#>             V9      Bias
#> [1,] -0.930846 0.7862737
#> 
#> $Bias
#> [1] 1
#> 
#> $ClassNames
#> [1] R M
#> Levels: M R
#> 
#> $NbClass
#> [1] 2
#> 
#> attr(,"class")
#> [1] "LiblineaR"


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>  0.2463768