Skip to contents

Multinomial Logistic Regression model with a ridge estimator. Calls RWeka::Logistic() from RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.logistic")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

IdTypeDefaultLevelsRange
subsetuntyped--
na.actionuntyped--
ClogicalFALSETRUE, FALSE-
Rnumeric-\((-\infty, \infty)\)
Minteger-1\((-\infty, \infty)\)
output_debug_infologicalFALSETRUE, FALSE-
do_not_check_capabilitieslogicalFALSETRUE, FALSE-
num_decimal_placesinteger2\([1, \infty)\)
batch_sizeinteger100\([1, \infty)\)
optionsuntypedNULL-

References

le Cessie, S., van Houwelingen, J.C. (1992). “Ridge Estimators in Logistic Regression.” Applied Statistics, 41(1), 191-201.

See also

Author

damirpolat

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifLogistic

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifLogistic$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = mlr3::lrn("classif.logistic")
print(learner)
#> <LearnerClassifLogistic:classif.logistic>: Multinomial Logistic Regression
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, RWeka
#> * Predict Types:  [response], prob
#> * Feature Types: logical, integer, numeric, factor, ordered
#> * Properties: missings, multiclass, twoclass

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> Logistic Regression with ridge parameter of 1.0E-8
#> Coefficients...
#>                               Class
#> Variable                          M
#> ===================================
#> V1                        1043.1882
#> V10                       -285.4725
#> V11                        210.8132
#> V12                         150.152
#> V13                       -104.9119
#> V14                          4.5768
#> V15                         34.7324
#> V16                        -99.3379
#> V17                       -175.2553
#> V18                        116.9217
#> V19                        164.3546
#> V2                         245.1175
#> V20                       -115.1234
#> V21                        -66.6106
#> V22                         65.3535
#> V23                         33.7332
#> V24                        -24.9186
#> V25                         55.4391
#> V26                       -122.6591
#> V27                         41.7222
#> V28                        103.9895
#> V29                       -113.1295
#> V3                        -724.0132
#> V30                        145.4111
#> V31                       -289.2378
#> V32                         27.3191
#> V33                         78.4065
#> V34                        -16.0375
#> V35                        -12.9014
#> V36                        -80.1963
#> V37                         56.3388
#> V38                          4.5486
#> V39                        -49.1749
#> V4                        -169.9983
#> V40                        -72.6491
#> V41                         78.5428
#> V42                         35.9028
#> V43                       -193.8935
#> V44                         39.0333
#> V45                        108.6407
#> V46                        112.3359
#> V47                        -47.1749
#> V48                        107.0698
#> V49                        819.1244
#> V5                         133.6127
#> V50                      -2128.1372
#> V51                       2370.3963
#> V52                       2084.5147
#> V53                          28.303
#> V54                       -287.2968
#> V55                      -2492.7488
#> V56                        861.2257
#> V57                        653.9229
#> V58                       1367.4831
#> V59                        294.1147
#> V6                        -109.3283
#> V60                       -514.5436
#> V7                         -90.1457
#> V8                         -20.1802
#> V9                         195.7181
#> Intercept                   12.2483
#> 
#> 
#> Odds Ratios...
#>                               Class
#> Variable                          M
#> ===================================
#> V1                         Infinity
#> V10                               0
#> V11           3.5892683950378365E91
#> V12           1.6225340433521515E65
#> V13                               0
#> V14                          97.199
#> V15           1.2135913709487448E15
#> V16                               0
#> V17                               0
#> V18            6.004383469818497E50
#> V19            2.389385701849323E71
#> V2           2.8390503040127025E106
#> V20                               0
#> V21                               0
#> V22             2.41357261322611E28
#> V23           4.4684278074238244E14
#> V24                               0
#> V25           1.1936760423219313E24
#> V26                               0
#> V27          1.31737422266482714E18
#> V28           1.4522934927721234E45
#> V29                               0
#> V3                                0
#> V30           1.4165186078210127E63
#> V31                               0
#> V32             7.32013592183743E11
#> V33           1.1258875181632597E34
#> V34                               0
#> V35                               0
#> V36                               0
#> V37           2.9350631267598805E24
#> V38                         94.4969
#> V39                               0
#> V4                                0
#> V40                               0
#> V41           1.2903740926854087E34
#> V42            3.912080187980613E15
#> V43                               0
#> V44            8.952916706351616E16
#> V45           1.5207086746586878E47
#> V46            6.121654358195916E48
#> V47                               0
#> V48           3.1610688338184634E46
#> V49                        Infinity
#> V5             1.064826050566388E58
#> V50                               0
#> V51                        Infinity
#> V52                        Infinity
#> V53           1.9580404117821165E12
#> V54                               0
#> V55                               0
#> V56                        Infinity
#> V57            9.88833198016503E283
#> V58                        Infinity
#> V59           5.399798759706362E127
#> V6                                0
#> V60                               0
#> V7                                0
#> V8                                0
#> V9             9.984071025476303E84
#> 


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>  0.3043478