Classification Naive Bayes Learner From Weka
Source:R/learner_RWeka_classif_naive_bayes_weka.R
mlr_learners_classif.naive_bayes_weka.RdNaive Bayes Classifier Using Estimator Classes.
Calls RWeka::make_Weka_classifier() from RWeka.
Custom mlr3 parameters
output_debug_info:original id: output-debug-info
do_not_check_capabilities:original id: do-not-check-capabilities
num_decimal_places:original id: num-decimal-places
batch_size:original id: batch-size
Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern
Parameters
| Id | Type | Default | Levels | Range |
| subset | untyped | - | - | |
| na.action | untyped | - | - | |
| K | logical | FALSE | TRUE, FALSE | - |
| D | logical | FALSE | TRUE, FALSE | - |
| O | logical | FALSE | TRUE, FALSE | - |
| output_debug_info | logical | FALSE | TRUE, FALSE | - |
| do_not_check_capabilities | logical | FALSE | TRUE, FALSE | - |
| num_decimal_places | integer | 2 | \([1, \infty)\) | |
| batch_size | integer | 100 | \([1, \infty)\) | |
| options | untyped | NULL | - |
References
John GH, Langley P (1995). “Estimating Continuous Distributions in Bayesian Classifiers.” In Eleventh Conference on Uncertainty in Artificial Intelligence, 338-345.
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifNaiveBayesWeka
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Method marshal()
Marshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::marshal_model().
Method unmarshal()
Unmarshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::unmarshal_model().
Examples
# Define the Learner
learner = lrn("classif.naive_bayes_weka")
print(learner)
#>
#> ── <LearnerClassifNaiveBayesWeka> (classif.naive_bayes_weka): Naive Bayes ──────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and RWeka
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: marshal, missings, multiclass, and twoclass
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> Naive Bayes Classifier
#>
#> Class
#> Attribute M R
#> (0.52) (0.48)
#> ===============================
#> V1
#> mean 0.0358 0.0235
#> std. dev. 0.0291 0.0148
#> weight sum 73 66
#> precision 0.0011 0.0011
#>
#> V10
#> mean 0.2566 0.1633
#> std. dev. 0.1385 0.1175
#> weight sum 73 66
#> precision 0.0051 0.0051
#>
#> V11
#> mean 0.2922 0.1784
#> std. dev. 0.1302 0.1171
#> weight sum 73 66
#> precision 0.0052 0.0052
#>
#> V12
#> mean 0.3012 0.1943
#> std. dev. 0.1275 0.1437
#> weight sum 73 66
#> precision 0.005 0.005
#>
#> V13
#> mean 0.3164 0.2319
#> std. dev. 0.1307 0.1466
#> weight sum 73 66
#> precision 0.0051 0.0051
#>
#> V14
#> mean 0.3238 0.2706
#> std. dev. 0.1604 0.1766
#> weight sum 73 66
#> precision 0.0071 0.0071
#>
#> V15
#> mean 0.3314 0.3115
#> std. dev. 0.1937 0.2276
#> weight sum 73 66
#> precision 0.0073 0.0073
#>
#> V16
#> mean 0.3845 0.3764
#> std. dev. 0.2167 0.2646
#> weight sum 73 66
#> precision 0.0072 0.0072
#>
#> V17
#> mean 0.4209 0.4113
#> std. dev. 0.2436 0.2914
#> weight sum 73 66
#> precision 0.0071 0.0071
#>
#> V18
#> mean 0.4593 0.437
#> std. dev. 0.2504 0.272
#> weight sum 73 66
#> precision 0.007 0.007
#>
#> V19
#> mean 0.5352 0.4566
#> std. dev. 0.2502 0.2519
#> weight sum 73 66
#> precision 0.0069 0.0069
#>
#> V2
#> mean 0.0484 0.0294
#> std. dev. 0.0415 0.0194
#> weight sum 73 66
#> precision 0.0019 0.0019
#>
#> V20
#> mean 0.6004 0.4807
#> std. dev. 0.2657 0.2554
#> weight sum 73 66
#> precision 0.0067 0.0067
#>
#> V21
#> mean 0.6374 0.5256
#> std. dev. 0.2668 0.2399
#> weight sum 73 66
#> precision 0.007 0.007
#>
#> V22
#> mean 0.6466 0.5444
#> std. dev. 0.2542 0.2438
#> weight sum 73 66
#> precision 0.0072 0.0072
#>
#> V23
#> mean 0.6571 0.5879
#> std. dev. 0.2613 0.2302
#> weight sum 73 66
#> precision 0.007 0.007
#>
#> V24
#> mean 0.6798 0.6454
#> std. dev. 0.2488 0.229
#> weight sum 73 66
#> precision 0.0073 0.0073
#>
#> V25
#> mean 0.6804 0.672
#> std. dev. 0.2276 0.2483
#> weight sum 73 66
#> precision 0.0073 0.0073
#>
#> V26
#> mean 0.7052 0.7021
#> std. dev. 0.2297 0.2309
#> weight sum 73 66
#> precision 0.0064 0.0064
#>
#> V27
#> mean 0.7186 0.7061
#> std. dev. 0.2644 0.2043
#> weight sum 73 66
#> precision 0.0073 0.0073
#>
#> V28
#> mean 0.7253 0.6878
#> std. dev. 0.262 0.1893
#> weight sum 73 66
#> precision 0.0076 0.0076
#>
#> V29
#> mean 0.6629 0.6385
#> std. dev. 0.2379 0.2358
#> weight sum 73 66
#> precision 0.0073 0.0073
#>
#> V3
#> mean 0.0525 0.0361
#> std. dev. 0.0466 0.0254
#> weight sum 73 66
#> precision 0.0023 0.0023
#>
#> V30
#> mean 0.5813 0.5911
#> std. dev. 0.2019 0.2447
#> weight sum 73 66
#> precision 0.007 0.007
#>
#> V31
#> mean 0.4905 0.5457
#> std. dev. 0.217 0.2132
#> weight sum 73 66
#> precision 0.0061 0.0061
#>
#> V32
#> mean 0.4345 0.4682
#> std. dev. 0.2082 0.2118
#> weight sum 73 66
#> precision 0.0065 0.0065
#>
#> V33
#> mean 0.4042 0.4648
#> std. dev. 0.1743 0.2241
#> weight sum 73 66
#> precision 0.0068 0.0068
#>
#> V34
#> mean 0.3592 0.4769
#> std. dev. 0.1878 0.2523
#> weight sum 73 66
#> precision 0.0068 0.0068
#>
#> V35
#> mean 0.3278 0.4911
#> std. dev. 0.2425 0.2616
#> weight sum 73 66
#> precision 0.0071 0.0071
#>
#> V36
#> mean 0.3086 0.4871
#> std. dev. 0.2552 0.2631
#> weight sum 73 66
#> precision 0.0072 0.0072
#>
#> V37
#> mean 0.3188 0.4335
#> std. dev. 0.236 0.2329
#> weight sum 73 66
#> precision 0.0067 0.0067
#>
#> V38
#> mean 0.3291 0.3595
#> std. dev. 0.2002 0.2182
#> weight sum 73 66
#> precision 0.0071 0.0071
#>
#> V39
#> mean 0.3328 0.3117
#> std. dev. 0.1865 0.1991
#> weight sum 73 66
#> precision 0.0063 0.0063
#>
#> V4
#> mean 0.0666 0.0395
#> std. dev. 0.0576 0.0301
#> weight sum 73 66
#> precision 0.0032 0.0032
#>
#> V40
#> mean 0.3025 0.3236
#> std. dev. 0.1636 0.1818
#> weight sum 73 66
#> precision 0.0065 0.0065
#>
#> V41
#> mean 0.2938 0.2959
#> std. dev. 0.1618 0.1764
#> weight sum 73 66
#> precision 0.0054 0.0054
#>
#> V42
#> mean 0.3014 0.2661
#> std. dev. 0.1736 0.1676
#> weight sum 73 66
#> precision 0.0058 0.0058
#>
#> V43
#> mean 0.277 0.2255
#> std. dev. 0.1489 0.1347
#> weight sum 73 66
#> precision 0.0057 0.0057
#>
#> V44
#> mean 0.2557 0.187
#> std. dev. 0.1454 0.1185
#> weight sum 73 66
#> precision 0.0059 0.0059
#>
#> V45
#> mean 0.2556 0.1467
#> std. dev. 0.1819 0.0945
#> weight sum 73 66
#> precision 0.0052 0.0052
#>
#> V46
#> mean 0.2107 0.1144
#> std. dev. 0.1622 0.086
#> weight sum 73 66
#> precision 0.0054 0.0054
#>
#> V47
#> mean 0.1548 0.0877
#> std. dev. 0.0986 0.0598
#> weight sum 73 66
#> precision 0.004 0.004
#>
#> V48
#> mean 0.1177 0.0677
#> std. dev. 0.0671 0.0425
#> weight sum 73 66
#> precision 0.0025 0.0025
#>
#> V49
#> mean 0.0641 0.037
#> std. dev. 0.0361 0.027
#> weight sum 73 66
#> precision 0.0012 0.0012
#>
#> V5
#> mean 0.0885 0.063
#> std. dev. 0.059 0.0504
#> weight sum 73 66
#> precision 0.003 0.003
#>
#> V50
#> mean 0.0225 0.0157
#> std. dev. 0.0139 0.0103
#> weight sum 73 66
#> precision 0.0008 0.0008
#>
#> V51
#> mean 0.0191 0.0114
#> std. dev. 0.0127 0.0086
#> weight sum 73 66
#> precision 0.0008 0.0008
#>
#> V52
#> mean 0.0168 0.0098
#> std. dev. 0.0117 0.007
#> weight sum 73 66
#> precision 0.0007 0.0007
#>
#> V53
#> mean 0.0123 0.0088
#> std. dev. 0.0082 0.0055
#> weight sum 73 66
#> precision 0.0004 0.0004
#>
#> V54
#> mean 0.0114 0.0095
#> std. dev. 0.0074 0.0052
#> weight sum 73 66
#> precision 0.0003 0.0003
#>
#> V55
#> mean 0.0101 0.0079
#> std. dev. 0.0086 0.0049
#> weight sum 73 66
#> precision 0.0005 0.0005
#>
#> V56
#> mean 0.0091 0.0077
#> std. dev. 0.0066 0.005
#> weight sum 73 66
#> precision 0.0004 0.0004
#>
#> V57
#> mean 0.0081 0.0082
#> std. dev. 0.0062 0.0061
#> weight sum 73 66
#> precision 0.0004 0.0004
#>
#> V58
#> mean 0.0089 0.007
#> std. dev. 0.008 0.0047
#> weight sum 73 66
#> precision 0.0005 0.0005
#>
#> V59
#> mean 0.0085 0.0074
#> std. dev. 0.007 0.0054
#> weight sum 73 66
#> precision 0.0004 0.0004
#>
#> V6
#> mean 0.1123 0.1018
#> std. dev. 0.0512 0.0702
#> weight sum 73 66
#> precision 0.0029 0.0029
#>
#> V60
#> mean 0.0068 0.0058
#> std. dev. 0.0066 0.0036
#> weight sum 73 66
#> precision 0.0005 0.0005
#>
#> V7
#> mean 0.1292 0.1141
#> std. dev. 0.0569 0.0674
#> weight sum 73 66
#> precision 0.0028 0.0028
#>
#> V8
#> mean 0.1474 0.117
#> std. dev. 0.0769 0.0878
#> weight sum 73 66
#> precision 0.0031 0.0031
#>
#> V9
#> mean 0.2116 0.1424
#> std. dev. 0.1161 0.1083
#> weight sum 73 66
#> precision 0.0049 0.0049
#>
#>
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.3188406