Classification Naive Bayes Learner From Weka
Source:R/learner_RWeka_classif_naive_bayes_weka.R
mlr_learners_classif.naive_bayes_weka.RdNaive Bayes Classifier Using Estimator Classes.
Calls RWeka::make_Weka_classifier() from RWeka.
Custom mlr3 parameters
output_debug_info:original id: output-debug-info
do_not_check_capabilities:original id: do-not-check-capabilities
num_decimal_places:original id: num-decimal-places
batch_size:original id: batch-size
Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern
Parameters
| Id | Type | Default | Levels | Range |
| subset | untyped | - | - | |
| na.action | untyped | - | - | |
| K | logical | FALSE | TRUE, FALSE | - |
| D | logical | FALSE | TRUE, FALSE | - |
| O | logical | FALSE | TRUE, FALSE | - |
| output_debug_info | logical | FALSE | TRUE, FALSE | - |
| do_not_check_capabilities | logical | FALSE | TRUE, FALSE | - |
| num_decimal_places | integer | 2 | \([1, \infty)\) | |
| batch_size | integer | 100 | \([1, \infty)\) | |
| options | untyped | NULL | - |
References
John GH, Langley P (1995). “Estimating Continuous Distributions in Bayesian Classifiers.” In Eleventh Conference on Uncertainty in Artificial Intelligence, 338-345.
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifNaiveBayesWeka
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Method marshal()
Marshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::marshal_model().
Method unmarshal()
Unmarshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::unmarshal_model().
Examples
# Define the Learner
learner = lrn("classif.naive_bayes_weka")
print(learner)
#>
#> ── <LearnerClassifNaiveBayesWeka> (classif.naive_bayes_weka): Naive Bayes ──────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and RWeka
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: marshal, missings, multiclass, and twoclass
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> Naive Bayes Classifier
#>
#> Class
#> Attribute M R
#> (0.56) (0.44)
#> ===============================
#> V1
#> mean 0.0369 0.0208
#> std. dev. 0.0301 0.0136
#> weight sum 78 61
#> precision 0.0011 0.0011
#>
#> V10
#> mean 0.2375 0.1644
#> std. dev. 0.1269 0.1206
#> weight sum 78 61
#> precision 0.0044 0.0044
#>
#> V11
#> mean 0.2833 0.1697
#> std. dev. 0.1148 0.1197
#> weight sum 78 61
#> precision 0.0044 0.0044
#>
#> V12
#> mean 0.2997 0.1859
#> std. dev. 0.1211 0.137
#> weight sum 78 61
#> precision 0.005 0.005
#>
#> V13
#> mean 0.3095 0.2177
#> std. dev. 0.1391 0.1424
#> weight sum 78 61
#> precision 0.0052 0.0052
#>
#> V14
#> mean 0.3159 0.254
#> std. dev. 0.1592 0.1605
#> weight sum 78 61
#> precision 0.0058 0.0058
#>
#> V15
#> mean 0.3311 0.2964
#> std. dev. 0.1999 0.2109
#> weight sum 78 61
#> precision 0.0073 0.0073
#>
#> V16
#> mean 0.385 0.3557
#> std. dev. 0.2206 0.2371
#> weight sum 78 61
#> precision 0.0072 0.0072
#>
#> V17
#> mean 0.4225 0.4005
#> std. dev. 0.249 0.2863
#> weight sum 78 61
#> precision 0.007 0.007
#>
#> V18
#> mean 0.4648 0.4426
#> std. dev. 0.2596 0.2652
#> weight sum 78 61
#> precision 0.0071 0.0071
#>
#> V19
#> mean 0.5429 0.4591
#> std. dev. 0.2526 0.2571
#> weight sum 78 61
#> precision 0.0068 0.0068
#>
#> V2
#> mean 0.0464 0.0267
#> std. dev. 0.0417 0.0207
#> weight sum 78 61
#> precision 0.0019 0.0019
#>
#> V20
#> mean 0.6186 0.4926
#> std. dev. 0.2431 0.2566
#> weight sum 78 61
#> precision 0.0069 0.0069
#>
#> V21
#> mean 0.6599 0.5274
#> std. dev. 0.2456 0.2553
#> weight sum 78 61
#> precision 0.0071 0.0071
#>
#> V22
#> mean 0.6671 0.5609
#> std. dev. 0.2372 0.2693
#> weight sum 78 61
#> precision 0.0067 0.0067
#>
#> V23
#> mean 0.67 0.5997
#> std. dev. 0.2513 0.2567
#> weight sum 78 61
#> precision 0.007 0.007
#>
#> V24
#> mean 0.6727 0.6273
#> std. dev. 0.2433 0.2273
#> weight sum 78 61
#> precision 0.0071 0.0071
#>
#> V25
#> mean 0.6639 0.6382
#> std. dev. 0.2443 0.2498
#> weight sum 78 61
#> precision 0.0072 0.0072
#>
#> V26
#> mean 0.6907 0.6767
#> std. dev. 0.2372 0.2525
#> weight sum 78 61
#> precision 0.007 0.007
#>
#> V27
#> mean 0.6954 0.6743
#> std. dev. 0.2649 0.2403
#> weight sum 78 61
#> precision 0.0074 0.0074
#>
#> V28
#> mean 0.6837 0.6814
#> std. dev. 0.2552 0.2076
#> weight sum 78 61
#> precision 0.0072 0.0072
#>
#> V29
#> mean 0.6228 0.66
#> std. dev. 0.2461 0.2174
#> weight sum 78 61
#> precision 0.0074 0.0074
#>
#> V3
#> mean 0.0507 0.0342
#> std. dev. 0.046 0.0273
#> weight sum 78 61
#> precision 0.0023 0.0023
#>
#> V30
#> mean 0.571 0.618
#> std. dev. 0.2114 0.2121
#> weight sum 78 61
#> precision 0.0062 0.0062
#>
#> V31
#> mean 0.482 0.5523
#> std. dev. 0.227 0.1946
#> weight sum 78 61
#> precision 0.0066 0.0066
#>
#> V32
#> mean 0.4415 0.4537
#> std. dev. 0.2128 0.2098
#> weight sum 78 61
#> precision 0.0065 0.0065
#>
#> V33
#> mean 0.4101 0.4348
#> std. dev. 0.2033 0.2159
#> weight sum 78 61
#> precision 0.0069 0.0069
#>
#> V34
#> mean 0.374 0.4492
#> std. dev. 0.2037 0.254
#> weight sum 78 61
#> precision 0.0068 0.0068
#>
#> V35
#> mean 0.3427 0.4355
#> std. dev. 0.2405 0.2634
#> weight sum 78 61
#> precision 0.0072 0.0072
#>
#> V36
#> mean 0.3178 0.4269
#> std. dev. 0.2427 0.2586
#> weight sum 78 61
#> precision 0.0071 0.0071
#>
#> V37
#> mean 0.3179 0.3874
#> std. dev. 0.2249 0.2478
#> weight sum 78 61
#> precision 0.0066 0.0066
#>
#> V38
#> mean 0.3238 0.3618
#> std. dev. 0.1985 0.2342
#> weight sum 78 61
#> precision 0.007 0.007
#>
#> V39
#> mean 0.3363 0.3362
#> std. dev. 0.1755 0.236
#> weight sum 78 61
#> precision 0.007 0.007
#>
#> V4
#> mean 0.0632 0.0402
#> std. dev. 0.0568 0.0332
#> weight sum 78 61
#> precision 0.0033 0.0033
#>
#> V40
#> mean 0.3081 0.3271
#> std. dev. 0.1601 0.2114
#> weight sum 78 61
#> precision 0.0067 0.0067
#>
#> V41
#> mean 0.2912 0.2856
#> std. dev. 0.1646 0.179
#> weight sum 78 61
#> precision 0.0063 0.0063
#>
#> V42
#> mean 0.2996 0.2351
#> std. dev. 0.1757 0.1627
#> weight sum 78 61
#> precision 0.0059 0.0059
#>
#> V43
#> mean 0.281 0.1993
#> std. dev. 0.1401 0.1321
#> weight sum 78 61
#> precision 0.0057 0.0057
#>
#> V44
#> mean 0.243 0.1616
#> std. dev. 0.1459 0.1073
#> weight sum 78 61
#> precision 0.0059 0.0059
#>
#> V45
#> mean 0.2435 0.133
#> std. dev. 0.1827 0.1014
#> weight sum 78 61
#> precision 0.0052 0.0052
#>
#> V46
#> mean 0.2046 0.1113
#> std. dev. 0.1592 0.1044
#> weight sum 78 61
#> precision 0.0054 0.0054
#>
#> V47
#> mean 0.1484 0.0942
#> std. dev. 0.0968 0.0756
#> weight sum 78 61
#> precision 0.0041 0.0041
#>
#> V48
#> mean 0.1054 0.0651
#> std. dev. 0.0678 0.0493
#> weight sum 78 61
#> precision 0.0025 0.0025
#>
#> V49
#> mean 0.0615 0.036
#> std. dev. 0.0369 0.0298
#> weight sum 78 61
#> precision 0.0015 0.0015
#>
#> V5
#> mean 0.0854 0.06
#> std. dev. 0.0602 0.0473
#> weight sum 78 61
#> precision 0.003 0.003
#>
#> V50
#> mean 0.0231 0.0187
#> std. dev. 0.0147 0.0138
#> weight sum 78 61
#> precision 0.0007 0.0007
#>
#> V51
#> mean 0.018 0.0131
#> std. dev. 0.013 0.009
#> weight sum 78 61
#> precision 0.0009 0.0009
#>
#> V52
#> mean 0.0159 0.0111
#> std. dev. 0.0116 0.0075
#> weight sum 78 61
#> precision 0.0007 0.0007
#>
#> V53
#> mean 0.0115 0.0097
#> std. dev. 0.0077 0.0064
#> weight sum 78 61
#> precision 0.0003 0.0003
#>
#> V54
#> mean 0.0117 0.0093
#> std. dev. 0.0077 0.0051
#> weight sum 78 61
#> precision 0.0003 0.0003
#>
#> V55
#> mean 0.0096 0.0089
#> std. dev. 0.0082 0.0052
#> weight sum 78 61
#> precision 0.0004 0.0004
#>
#> V56
#> mean 0.0086 0.0072
#> std. dev. 0.0062 0.0047
#> weight sum 78 61
#> precision 0.0004 0.0004
#>
#> V57
#> mean 0.0077 0.0073
#> std. dev. 0.0061 0.0055
#> weight sum 78 61
#> precision 0.0004 0.0004
#>
#> V58
#> mean 0.0091 0.0067
#> std. dev. 0.0074 0.0054
#> weight sum 78 61
#> precision 0.0004 0.0004
#>
#> V59
#> mean 0.0088 0.0071
#> std. dev. 0.006 0.0055
#> weight sum 78 61
#> precision 0.0003 0.0003
#>
#> V6
#> mean 0.1093 0.0963
#> std. dev. 0.0525 0.066
#> weight sum 78 61
#> precision 0.0028 0.0028
#>
#> V60
#> mean 0.007 0.0063
#> std. dev. 0.0049 0.0037
#> weight sum 78 61
#> precision 0.0003 0.0003
#>
#> V7
#> mean 0.1261 0.1156
#> std. dev. 0.057 0.0703
#> weight sum 78 61
#> precision 0.0028 0.0028
#>
#> V8
#> mean 0.1421 0.1187
#> std. dev. 0.0864 0.0834
#> weight sum 78 61
#> precision 0.0034 0.0034
#>
#> V9
#> mean 0.2042 0.139
#> std. dev. 0.1188 0.1068
#> weight sum 78 61
#> precision 0.005 0.005
#>
#>
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.3043478