Classification Naive Bayes Learner From Weka
Source:R/learner_RWeka_classif_naive_bayes_weka.R
mlr_learners_classif.naive_bayes_weka.RdNaive Bayes Classifier Using Estimator Classes.
Calls RWeka::make_Weka_classifier() from RWeka.
Custom mlr3 parameters
output_debug_info:original id: output-debug-info
do_not_check_capabilities:original id: do-not-check-capabilities
num_decimal_places:original id: num-decimal-places
batch_size:original id: batch-size
Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern
Parameters
| Id | Type | Default | Levels | Range |
| subset | untyped | - | - | |
| na.action | untyped | - | - | |
| K | logical | FALSE | TRUE, FALSE | - |
| D | logical | FALSE | TRUE, FALSE | - |
| O | logical | FALSE | TRUE, FALSE | - |
| output_debug_info | logical | FALSE | TRUE, FALSE | - |
| do_not_check_capabilities | logical | FALSE | TRUE, FALSE | - |
| num_decimal_places | integer | 2 | \([1, \infty)\) | |
| batch_size | integer | 100 | \([1, \infty)\) | |
| options | untyped | NULL | - |
References
John GH, Langley P (1995). “Estimating Continuous Distributions in Bayesian Classifiers.” In Eleventh Conference on Uncertainty in Artificial Intelligence, 338-345.
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifNaiveBayesWeka
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Method marshal()
Marshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::marshal_model().
Method unmarshal()
Unmarshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::unmarshal_model().
Examples
# Define the Learner
learner = lrn("classif.naive_bayes_weka")
print(learner)
#>
#> ── <LearnerClassifNaiveBayesWeka> (classif.naive_bayes_weka): Naive Bayes ──────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and RWeka
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: marshal, missings, multiclass, and twoclass
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> Naive Bayes Classifier
#>
#> Class
#> Attribute M R
#> (0.49) (0.51)
#> ===============================
#> V1
#> mean 0.0334 0.0232
#> std. dev. 0.0275 0.0159
#> weight sum 68 71
#> precision 0.0011 0.0011
#>
#> V10
#> mean 0.2476 0.1654
#> std. dev. 0.1265 0.1104
#> weight sum 68 71
#> precision 0.0043 0.0043
#>
#> V11
#> mean 0.2827 0.1798
#> std. dev. 0.1145 0.1088
#> weight sum 68 71
#> precision 0.0044 0.0044
#>
#> V12
#> mean 0.2893 0.1902
#> std. dev. 0.1267 0.1286
#> weight sum 68 71
#> precision 0.0046 0.0046
#>
#> V13
#> mean 0.3117 0.2275
#> std. dev. 0.141 0.1317
#> weight sum 68 71
#> precision 0.0053 0.0053
#>
#> V14
#> mean 0.3265 0.2763
#> std. dev. 0.1765 0.1619
#> weight sum 68 71
#> precision 0.0072 0.0072
#>
#> V15
#> mean 0.344 0.312
#> std. dev. 0.2023 0.2083
#> weight sum 68 71
#> precision 0.0066 0.0066
#>
#> V16
#> mean 0.3928 0.3769
#> std. dev. 0.2184 0.2486
#> weight sum 68 71
#> precision 0.0071 0.0071
#>
#> V17
#> mean 0.4287 0.4111
#> std. dev. 0.2535 0.2893
#> weight sum 68 71
#> precision 0.0073 0.0073
#>
#> V18
#> mean 0.4645 0.436
#> std. dev. 0.2674 0.2576
#> weight sum 68 71
#> precision 0.007 0.007
#>
#> V19
#> mean 0.5545 0.4426
#> std. dev. 0.2479 0.2425
#> weight sum 68 71
#> precision 0.0068 0.0068
#>
#> V2
#> mean 0.0423 0.0323
#> std. dev. 0.0331 0.0259
#> weight sum 68 71
#> precision 0.0013 0.0013
#>
#> V20
#> mean 0.6443 0.4773
#> std. dev. 0.2342 0.2561
#> weight sum 68 71
#> precision 0.0069 0.0069
#>
#> V21
#> mean 0.6949 0.5305
#> std. dev. 0.2277 0.2562
#> weight sum 68 71
#> precision 0.0071 0.0071
#>
#> V22
#> mean 0.6911 0.5683
#> std. dev. 0.2268 0.2621
#> weight sum 68 71
#> precision 0.0069 0.0069
#>
#> V23
#> mean 0.6779 0.6129
#> std. dev. 0.2497 0.2352
#> weight sum 68 71
#> precision 0.0071 0.0071
#>
#> V24
#> mean 0.6741 0.6624
#> std. dev. 0.2511 0.2302
#> weight sum 68 71
#> precision 0.0073 0.0073
#>
#> V25
#> mean 0.6727 0.6892
#> std. dev. 0.2555 0.2362
#> weight sum 68 71
#> precision 0.007 0.007
#>
#> V26
#> mean 0.7153 0.705
#> std. dev. 0.245 0.2278
#> weight sum 68 71
#> precision 0.007 0.007
#>
#> V27
#> mean 0.7215 0.6759
#> std. dev. 0.2724 0.2241
#> weight sum 68 71
#> precision 0.0077 0.0077
#>
#> V28
#> mean 0.7167 0.6436
#> std. dev. 0.2546 0.2116
#> weight sum 68 71
#> precision 0.007 0.007
#>
#> V29
#> mean 0.6593 0.6062
#> std. dev. 0.2359 0.2422
#> weight sum 68 71
#> precision 0.0072 0.0072
#>
#> V3
#> mean 0.0468 0.0371
#> std. dev. 0.0325 0.0299
#> weight sum 68 71
#> precision 0.0013 0.0013
#>
#> V30
#> mean 0.6025 0.5512
#> std. dev. 0.2122 0.2403
#> weight sum 68 71
#> precision 0.007 0.007
#>
#> V31
#> mean 0.491 0.5213
#> std. dev. 0.2308 0.2077
#> weight sum 68 71
#> precision 0.0066 0.0066
#>
#> V32
#> mean 0.4463 0.4573
#> std. dev. 0.2061 0.2211
#> weight sum 68 71
#> precision 0.0064 0.0064
#>
#> V33
#> mean 0.4012 0.4453
#> std. dev. 0.1899 0.2264
#> weight sum 68 71
#> precision 0.0067 0.0067
#>
#> V34
#> mean 0.3551 0.4405
#> std. dev. 0.2084 0.2559
#> weight sum 68 71
#> precision 0.0068 0.0068
#>
#> V35
#> mean 0.3203 0.4534
#> std. dev. 0.25 0.2588
#> weight sum 68 71
#> precision 0.0071 0.0071
#>
#> V36
#> mean 0.2943 0.462
#> std. dev. 0.2505 0.2612
#> weight sum 68 71
#> precision 0.0073 0.0073
#>
#> V37
#> mean 0.3027 0.4083
#> std. dev. 0.2259 0.2489
#> weight sum 68 71
#> precision 0.0067 0.0067
#>
#> V38
#> mean 0.3273 0.3351
#> std. dev. 0.2067 0.2274
#> weight sum 68 71
#> precision 0.007 0.007
#>
#> V39
#> mean 0.3274 0.3061
#> std. dev. 0.1824 0.2225
#> weight sum 68 71
#> precision 0.007 0.007
#>
#> V4
#> mean 0.0571 0.0428
#> std. dev. 0.0352 0.0317
#> weight sum 68 71
#> precision 0.0014 0.0014
#>
#> V40
#> mean 0.286 0.332
#> std. dev. 0.1546 0.2031
#> weight sum 68 71
#> precision 0.0067 0.0067
#>
#> V41
#> mean 0.2746 0.3012
#> std. dev. 0.1616 0.1857
#> weight sum 68 71
#> precision 0.0063 0.0063
#>
#> V42
#> mean 0.2896 0.2753
#> std. dev. 0.1722 0.1713
#> weight sum 68 71
#> precision 0.0058 0.0058
#>
#> V43
#> mean 0.274 0.2343
#> std. dev. 0.1491 0.1349
#> weight sum 68 71
#> precision 0.0055 0.0055
#>
#> V44
#> mean 0.2482 0.1944
#> std. dev. 0.1458 0.1088
#> weight sum 68 71
#> precision 0.0056 0.0056
#>
#> V45
#> mean 0.2415 0.1525
#> std. dev. 0.1838 0.1017
#> weight sum 68 71
#> precision 0.005 0.005
#>
#> V46
#> mean 0.2012 0.1281
#> std. dev. 0.1618 0.0996
#> weight sum 68 71
#> precision 0.0054 0.0054
#>
#> V47
#> mean 0.1482 0.1022
#> std. dev. 0.0992 0.0717
#> weight sum 68 71
#> precision 0.0041 0.0041
#>
#> V48
#> mean 0.1082 0.0742
#> std. dev. 0.0701 0.0517
#> weight sum 68 71
#> precision 0.0024 0.0024
#>
#> V49
#> mean 0.0615 0.043
#> std. dev. 0.0382 0.0326
#> weight sum 68 71
#> precision 0.0015 0.0015
#>
#> V5
#> mean 0.0798 0.0666
#> std. dev. 0.0486 0.0492
#> weight sum 68 71
#> precision 0.0019 0.0019
#>
#> V50
#> mean 0.0229 0.0187
#> std. dev. 0.0152 0.0132
#> weight sum 68 71
#> precision 0.0007 0.0007
#>
#> V51
#> mean 0.0198 0.0128
#> std. dev. 0.016 0.0084
#> weight sum 68 71
#> precision 0.0009 0.0009
#>
#> V52
#> mean 0.0151 0.0109
#> std. dev. 0.0107 0.0067
#> weight sum 68 71
#> precision 0.0006 0.0006
#>
#> V53
#> mean 0.0111 0.0099
#> std. dev. 0.0076 0.0061
#> weight sum 68 71
#> precision 0.0004 0.0004
#>
#> V54
#> mean 0.0121 0.0094
#> std. dev. 0.0082 0.0051
#> weight sum 68 71
#> precision 0.0003 0.0003
#>
#> V55
#> mean 0.0096 0.0084
#> std. dev. 0.0085 0.0051
#> weight sum 68 71
#> precision 0.0005 0.0005
#>
#> V56
#> mean 0.009 0.0071
#> std. dev. 0.007 0.0048
#> weight sum 68 71
#> precision 0.0004 0.0004
#>
#> V57
#> mean 0.0074 0.0078
#> std. dev. 0.0058 0.0051
#> weight sum 68 71
#> precision 0.0004 0.0004
#>
#> V58
#> mean 0.0089 0.0069
#> std. dev. 0.008 0.0047
#> weight sum 68 71
#> precision 0.0005 0.0005
#>
#> V59
#> mean 0.0078 0.0075
#> std. dev. 0.0055 0.0056
#> weight sum 68 71
#> precision 0.0003 0.0003
#>
#> V6
#> mean 0.1064 0.0967
#> std. dev. 0.0458 0.0703
#> weight sum 68 71
#> precision 0.0028 0.0028
#>
#> V60
#> mean 0.0067 0.0062
#> std. dev. 0.0045 0.0037
#> weight sum 68 71
#> precision 0.0002 0.0002
#>
#> V7
#> mean 0.1324 0.1168
#> std. dev. 0.0592 0.0691
#> weight sum 68 71
#> precision 0.0027 0.0027
#>
#> V8
#> mean 0.1523 0.1234
#> std. dev. 0.0899 0.0823
#> weight sum 68 71
#> precision 0.0034 0.0034
#>
#> V9
#> mean 0.2175 0.1377
#> std. dev. 0.1254 0.0953
#> weight sum 68 71
#> precision 0.0049 0.0049
#>
#>
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.2898551