Classification Naive Bayes Learner From Weka
Source:R/learner_RWeka_classif_naive_bayes_weka.R
mlr_learners_classif.naive_bayes_weka.RdNaive Bayes Classifier Using Estimator Classes.
Calls RWeka::make_Weka_classifier() from RWeka.
Custom mlr3 parameters
output_debug_info:original id: output-debug-info
do_not_check_capabilities:original id: do-not-check-capabilities
num_decimal_places:original id: num-decimal-places
batch_size:original id: batch-size
Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern
Parameters
| Id | Type | Default | Levels | Range |
| subset | untyped | - | - | |
| na.action | untyped | - | - | |
| K | logical | FALSE | TRUE, FALSE | - |
| D | logical | FALSE | TRUE, FALSE | - |
| O | logical | FALSE | TRUE, FALSE | - |
| output_debug_info | logical | FALSE | TRUE, FALSE | - |
| do_not_check_capabilities | logical | FALSE | TRUE, FALSE | - |
| num_decimal_places | integer | 2 | \([1, \infty)\) | |
| batch_size | integer | 100 | \([1, \infty)\) | |
| options | untyped | NULL | - |
References
John GH, Langley P (1995). “Estimating Continuous Distributions in Bayesian Classifiers.” In Eleventh Conference on Uncertainty in Artificial Intelligence, 338-345.
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifNaiveBayesWeka
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Method marshal()
Marshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::marshal_model().
Method unmarshal()
Unmarshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::unmarshal_model().
Examples
# Define the Learner
learner = lrn("classif.naive_bayes_weka")
print(learner)
#>
#> ── <LearnerClassifNaiveBayesWeka> (classif.naive_bayes_weka): Naive Bayes ──────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and RWeka
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: marshal, missings, multiclass, and twoclass
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> Naive Bayes Classifier
#>
#> Class
#> Attribute M R
#> (0.57) (0.43)
#> ===============================
#> V1
#> mean 0.0377 0.0236
#> std. dev. 0.0289 0.0151
#> weight sum 79 60
#> precision 0.0011 0.0011
#>
#> V10
#> mean 0.2592 0.1749
#> std. dev. 0.1492 0.1196
#> weight sum 79 60
#> precision 0.0051 0.0051
#>
#> V11
#> mean 0.2945 0.1899
#> std. dev. 0.1383 0.1245
#> weight sum 79 60
#> precision 0.0052 0.0052
#>
#> V12
#> mean 0.2961 0.1999
#> std. dev. 0.1319 0.1501
#> weight sum 79 60
#> precision 0.0049 0.0049
#>
#> V13
#> mean 0.3107 0.2332
#> std. dev. 0.1354 0.1452
#> weight sum 79 60
#> precision 0.0052 0.0052
#>
#> V14
#> mean 0.3183 0.2783
#> std. dev. 0.1633 0.1705
#> weight sum 79 60
#> precision 0.0072 0.0072
#>
#> V15
#> mean 0.3399 0.3212
#> std. dev. 0.1843 0.2265
#> weight sum 79 60
#> precision 0.0067 0.0067
#>
#> V16
#> mean 0.3844 0.3876
#> std. dev. 0.2015 0.2726
#> weight sum 79 60
#> precision 0.0071 0.0071
#>
#> V17
#> mean 0.4164 0.4258
#> std. dev. 0.2339 0.2994
#> weight sum 79 60
#> precision 0.0072 0.0072
#>
#> V18
#> mean 0.4521 0.461
#> std. dev. 0.258 0.2756
#> weight sum 79 60
#> precision 0.0068 0.0068
#>
#> V19
#> mean 0.54 0.4841
#> std. dev. 0.2548 0.2627
#> weight sum 79 60
#> precision 0.0066 0.0066
#>
#> V2
#> mean 0.0506 0.0303
#> std. dev. 0.04 0.0217
#> weight sum 79 60
#> precision 0.0018 0.0018
#>
#> V20
#> mean 0.6241 0.5217
#> std. dev. 0.2515 0.2549
#> weight sum 79 60
#> precision 0.0068 0.0068
#>
#> V21
#> mean 0.6757 0.5619
#> std. dev. 0.2387 0.2486
#> weight sum 79 60
#> precision 0.0071 0.0071
#>
#> V22
#> mean 0.6775 0.5894
#> std. dev. 0.2294 0.2624
#> weight sum 79 60
#> precision 0.0069 0.0069
#>
#> V23
#> mean 0.6735 0.624
#> std. dev. 0.25 0.2468
#> weight sum 79 60
#> precision 0.007 0.007
#>
#> V24
#> mean 0.6819 0.6608
#> std. dev. 0.2476 0.2355
#> weight sum 79 60
#> precision 0.0073 0.0073
#>
#> V25
#> mean 0.6733 0.667
#> std. dev. 0.2446 0.2483
#> weight sum 79 60
#> precision 0.0073 0.0073
#>
#> V26
#> mean 0.6944 0.6928
#> std. dev. 0.238 0.2334
#> weight sum 79 60
#> precision 0.0065 0.0065
#>
#> V27
#> mean 0.6997 0.7008
#> std. dev. 0.2695 0.1928
#> weight sum 79 60
#> precision 0.0071 0.0071
#>
#> V28
#> mean 0.7018 0.6715
#> std. dev. 0.2626 0.1874
#> weight sum 79 60
#> precision 0.0075 0.0075
#>
#> V29
#> mean 0.6392 0.6205
#> std. dev. 0.2458 0.2501
#> weight sum 79 60
#> precision 0.0074 0.0074
#>
#> V3
#> mean 0.0566 0.0395
#> std. dev. 0.0476 0.0292
#> weight sum 79 60
#> precision 0.0024 0.0024
#>
#> V30
#> mean 0.5779 0.5761
#> std. dev. 0.2127 0.2519
#> weight sum 79 60
#> precision 0.007 0.007
#>
#> V31
#> mean 0.481 0.5432
#> std. dev. 0.2122 0.1975
#> weight sum 79 60
#> precision 0.0062 0.0062
#>
#> V32
#> mean 0.424 0.482
#> std. dev. 0.1988 0.211
#> weight sum 79 60
#> precision 0.0062 0.0062
#>
#> V33
#> mean 0.3915 0.4725
#> std. dev. 0.1742 0.2181
#> weight sum 79 60
#> precision 0.0068 0.0068
#>
#> V34
#> mean 0.3724 0.4725
#> std. dev. 0.1908 0.24
#> weight sum 79 60
#> precision 0.0067 0.0067
#>
#> V35
#> mean 0.3489 0.4704
#> std. dev. 0.247 0.2499
#> weight sum 79 60
#> precision 0.0071 0.0071
#>
#> V36
#> mean 0.3245 0.4726
#> std. dev. 0.2563 0.2527
#> weight sum 79 60
#> precision 0.0072 0.0072
#>
#> V37
#> mean 0.3198 0.4403
#> std. dev. 0.2294 0.2402
#> weight sum 79 60
#> precision 0.0067 0.0067
#>
#> V38
#> mean 0.3353 0.351
#> std. dev. 0.2074 0.218
#> weight sum 79 60
#> precision 0.007 0.007
#>
#> V39
#> mean 0.3377 0.3115
#> std. dev. 0.1814 0.1896
#> weight sum 79 60
#> precision 0.0062 0.0062
#>
#> V4
#> mean 0.0715 0.0452
#> std. dev. 0.06 0.0333
#> weight sum 79 60
#> precision 0.0034 0.0034
#>
#> V40
#> mean 0.2981 0.3391
#> std. dev. 0.1506 0.1613
#> weight sum 79 60
#> precision 0.005 0.005
#>
#> V41
#> mean 0.2892 0.2988
#> std. dev. 0.1575 0.1634
#> weight sum 79 60
#> precision 0.0051 0.0051
#>
#> V42
#> mean 0.3022 0.252
#> std. dev. 0.1647 0.1602
#> weight sum 79 60
#> precision 0.0057 0.0057
#>
#> V43
#> mean 0.28 0.2066
#> std. dev. 0.144 0.1198
#> weight sum 79 60
#> precision 0.0055 0.0055
#>
#> V44
#> mean 0.2568 0.1753
#> std. dev. 0.1389 0.091
#> weight sum 79 60
#> precision 0.0041 0.0041
#>
#> V45
#> mean 0.2529 0.14
#> std. dev. 0.1727 0.0785
#> weight sum 79 60
#> precision 0.0051 0.0051
#>
#> V46
#> mean 0.1996 0.1096
#> std. dev. 0.1554 0.0759
#> weight sum 79 60
#> precision 0.0054 0.0054
#>
#> V47
#> mean 0.1439 0.0897
#> std. dev. 0.095 0.0551
#> weight sum 79 60
#> precision 0.0041 0.0041
#>
#> V48
#> mean 0.1078 0.0675
#> std. dev. 0.0666 0.0427
#> weight sum 79 60
#> precision 0.0025 0.0025
#>
#> V49
#> mean 0.0626 0.0377
#> std. dev. 0.0365 0.0265
#> weight sum 79 60
#> precision 0.0014 0.0014
#>
#> V5
#> mean 0.0857 0.0689
#> std. dev. 0.0647 0.0537
#> weight sum 79 60
#> precision 0.003 0.003
#>
#> V50
#> mean 0.0225 0.0157
#> std. dev. 0.0149 0.0098
#> weight sum 79 60
#> precision 0.0008 0.0008
#>
#> V51
#> mean 0.0196 0.0114
#> std. dev. 0.0149 0.0083
#> weight sum 79 60
#> precision 0.0008 0.0008
#>
#> V52
#> mean 0.0164 0.0106
#> std. dev. 0.0111 0.0071
#> weight sum 79 60
#> precision 0.0007 0.0007
#>
#> V53
#> mean 0.0122 0.0099
#> std. dev. 0.0081 0.006
#> weight sum 79 60
#> precision 0.0004 0.0004
#>
#> V54
#> mean 0.0125 0.009
#> std. dev. 0.0086 0.0047
#> weight sum 79 60
#> precision 0.0004 0.0004
#>
#> V55
#> mean 0.0102 0.0083
#> std. dev. 0.0089 0.0053
#> weight sum 79 60
#> precision 0.0004 0.0004
#>
#> V56
#> mean 0.0093 0.0074
#> std. dev. 0.0069 0.0051
#> weight sum 79 60
#> precision 0.0004 0.0004
#>
#> V57
#> mean 0.0084 0.008
#> std. dev. 0.0062 0.0065
#> weight sum 79 60
#> precision 0.0004 0.0004
#>
#> V58
#> mean 0.0093 0.0062
#> std. dev. 0.0079 0.0045
#> weight sum 79 60
#> precision 0.0005 0.0005
#>
#> V59
#> mean 0.0091 0.0072
#> std. dev. 0.0073 0.0047
#> weight sum 79 60
#> precision 0.0004 0.0004
#>
#> V6
#> mean 0.1113 0.1059
#> std. dev. 0.0459 0.0757
#> weight sum 79 60
#> precision 0.0028 0.0028
#>
#> V60
#> mean 0.0077 0.0062
#> std. dev. 0.0066 0.0036
#> weight sum 79 60
#> precision 0.0005 0.0005
#>
#> V7
#> mean 0.1326 0.1168
#> std. dev. 0.0594 0.0725
#> weight sum 79 60
#> precision 0.0028 0.0028
#>
#> V8
#> mean 0.1518 0.1225
#> std. dev. 0.0932 0.088
#> weight sum 79 60
#> precision 0.0034 0.0034
#>
#> V9
#> mean 0.2171 0.1508
#> std. dev. 0.1299 0.108
#> weight sum 79 60
#> precision 0.0049 0.0049
#>
#>
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.3043478