Skip to contents

Ensemble machine learning algorithm based on Random Ferns, which are a simplified, faster alternative to Random Forests. Calls rFerns::rFerns() from rFerns.

Initial parameter values

  • importance:

    • Actual default: FALSE

    • Initial value: "simple"

    • Reason for change: The default value of FALSE will resolve to "none", which turns importance calculation off. To enable importance calculation by default, importance is set to "simple".

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.rFerns")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, rFerns

Parameters

IdTypeDefaultLevelsRange
consistentSeeduntypedNULL-
depthinteger5\([1, 16]\)
fernsinteger1000\((-\infty, \infty)\)
importanceuntypedFALSE-
saveForestlogicalTRUETRUE, FALSE-
threadsinteger0\((-\infty, \infty)\)

References

Kursa MB (2014). “rFerns: An Implementation of the Random Ferns Method for General-Purpose Machine Learning.” Journal of Statistical Software, 61(10), 1–13. https://www.jstatsoft.org/v61/i10/.

Ozuysal, Mustafa, Calonder, Michael, Lepetit, Vincent, Fua, Pascal (2010). “Fast Keypoint Recognition Using Random Ferns.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(3), 448-461. doi:10.1109/TPAMI.2009.23 .

See also

Author

annanzrv

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRferns

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method importance()

The importance scores are extracted from the model slot importance.

Usage

LearnerClassifRferns$importance()

Returns

Named numeric().


Method oob_error()

OOB error is extracted from the model slot oobErr.

Usage

LearnerClassifRferns$oob_error()

Returns

numeric(1).


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifRferns$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = lrn("classif.rFerns")
print(learner)
#> 
#> ── <LearnerClassifRferns> (classif.rFerns): Random Ferns Classifier ────────────
#> • Model: -
#> • Parameters: importance=simple
#> • Packages: mlr3, mlr3extralearners, and rFerns
#> • Predict Types: [response]
#> • Feature Types: integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, multiclass, oob_error, and twoclass
#> • Other settings: use_weights = 'error'

# Define a Task
task = tsk("sonar")

# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> 
#>  Forest of 1000 ferns of a depth 5.
#> 
#>  OOB error 17.99%; OOB confusion matrix:
#>          True
#> Predicted  M  R
#>         M 63 15
#>         R 10 51
print(learner$importance())
#>         V11         V12         V10          V9         V48         V49 
#> 0.131089139 0.126331033 0.107695622 0.104824541 0.056995939 0.056157002 
#>         V13         V21         V45         V20         V51         V47 
#> 0.054748949 0.044979828 0.044672756 0.043066992 0.039709420 0.039651820 
#>          V4         V31         V23         V28         V46          V5 
#> 0.037608677 0.035833571 0.034148094 0.033914734 0.032406494 0.028682662 
#>         V42         V43         V35         V27         V36         V52 
#> 0.028326446 0.026663317 0.026243445 0.026090717 0.025383180 0.025346051 
#>         V22         V16         V32         V44         V17          V1 
#> 0.024806669 0.024524480 0.024080261 0.023358910 0.022449848 0.020645827 
#>         V37          V8         V40         V50         V26         V39 
#> 0.020538476 0.018419734 0.018016194 0.016618824 0.016269067 0.015665298 
#>         V18         V54          V6         V57         V29         V58 
#> 0.015381371 0.015034028 0.014735852 0.014490032 0.014081677 0.013796544 
#>         V34          V2         V60         V24         V53         V14 
#> 0.012181402 0.011560012 0.010474450 0.010081060 0.010049808 0.009910333 
#>          V3         V38         V25         V56         V33         V15 
#> 0.008996845 0.008822143 0.007843442 0.007734675 0.007523179 0.007242487 
#>         V19         V41          V7         V30         V59         V55 
#> 0.006334991 0.006035035 0.004984686 0.003931948 0.003399997 0.002772569 

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>   0.173913