Random Ferns Classification Learner
Source:R/learner_rFerns_classif_rFerns.R
mlr_learners_classif.rFerns.RdEnsemble machine learning algorithm based on Random Ferns, which are a simplified,
faster alternative to Random Forests.
Calls rFerns::rFerns() from rFerns.
Initial parameter values
importance:Actual default:
FALSEInitial value:
"simple"Reason for change: The default value of
FALSEwill resolve to "none", which turns importance calculation off. To enable importance calculation by default,importanceis set to"simple".
Meta Information
Task type: “classif”
Predict Types: “response”
Feature Types: “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, rFerns
Parameters
| Id | Type | Default | Levels | Range |
| consistentSeed | untyped | NULL | - | |
| depth | integer | 5 | \([1, 16]\) | |
| ferns | integer | 1000 | \((-\infty, \infty)\) | |
| importance | untyped | FALSE | - | |
| saveForest | logical | TRUE | TRUE, FALSE | - |
| threads | integer | 0 | \((-\infty, \infty)\) |
References
Kursa MB (2014). “rFerns: An Implementation of the Random Ferns Method for General-Purpose Machine Learning.” Journal of Statistical Software, 61(10), 1–13. https://www.jstatsoft.org/v61/i10/.
Ozuysal, Mustafa, Calonder, Michael, Lepetit, Vincent, Fua, Pascal (2010). “Fast Keypoint Recognition Using Random Ferns.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(3), 448-461. doi:10.1109/TPAMI.2009.23 .
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRferns
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Method importance()
The importance scores are extracted from the model slot importance.
Returns
Named numeric().
Examples
# Define the Learner
learner = lrn("classif.rFerns")
print(learner)
#>
#> ── <LearnerClassifRferns> (classif.rFerns): Random Ferns Classifier ────────────
#> • Model: -
#> • Parameters: importance=simple
#> • Packages: mlr3, mlr3extralearners, and rFerns
#> • Predict Types: [response]
#> • Feature Types: integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, multiclass, oob_error, and twoclass
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#>
#> Forest of 1000 ferns of a depth 5.
#>
#> OOB error 16.55%; OOB confusion matrix:
#> True
#> Predicted M R
#> M 64 12
#> R 11 52
print(learner$importance())
#> V11 V49 V9 V48 V51 V12
#> 0.124769092 0.084246324 0.083872781 0.083639781 0.078104802 0.077842032
#> V10 V47 V46 V45 V44 V37
#> 0.076872351 0.076702845 0.070544664 0.062283030 0.051481792 0.049007821
#> V36 V4 V21 V20 V43 V35
#> 0.046932632 0.045515427 0.042296777 0.042005823 0.038009372 0.035437501
#> V16 V52 V32 V8 V29 V27
#> 0.035210309 0.034136203 0.032918632 0.031363546 0.029901531 0.029454194
#> V5 V17 V28 V22 V31 V13
#> 0.029382502 0.029268896 0.027803579 0.027494859 0.027302826 0.026473180
#> V34 V23 V26 V15 V42 V59
#> 0.024542751 0.023921107 0.021914867 0.021242575 0.021182790 0.020466964
#> V19 V6 V38 V30 V33 V24
#> 0.019940944 0.019089544 0.018867118 0.018099601 0.016988043 0.016512949
#> V14 V3 V18 V55 V1 V25
#> 0.016208018 0.014231375 0.014151893 0.013136989 0.009907824 0.009807533
#> V39 V40 V50 V54 V2 V53
#> 0.009382960 0.007514409 0.006071191 0.005496283 0.005471071 0.005314317
#> V41 V58 V7 V60 V56 V57
#> 0.004647017 0.002510538 0.002194696 0.001379113 -0.000817734 -0.002019844
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.2608696