Classification Random Forest Learner
Source:R/learner_randomForest_classif_randomForest.R
mlr_learners_classif.randomForest.RdRandom forest for classification.
Calls randomForest::randomForest() from randomForest.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, randomForest
Parameters
| Id | Type | Default | Levels | Range |
| ntree | integer | 500 | \([1, \infty)\) | |
| mtry | integer | - | \([1, \infty)\) | |
| replace | logical | TRUE | TRUE, FALSE | - |
| classwt | untyped | NULL | - | |
| cutoff | untyped | - | - | |
| strata | untyped | - | - | |
| sampsize | untyped | - | - | |
| nodesize | integer | 1 | \([1, \infty)\) | |
| maxnodes | integer | - | \([1, \infty)\) | |
| importance | character | FALSE | accuracy, gini, none | - |
| localImp | logical | FALSE | TRUE, FALSE | - |
| proximity | logical | FALSE | TRUE, FALSE | - |
| oob.prox | logical | - | TRUE, FALSE | - |
| norm.votes | logical | TRUE | TRUE, FALSE | - |
| do.trace | logical | FALSE | TRUE, FALSE | - |
| keep.forest | logical | TRUE | TRUE, FALSE | - |
| keep.inbag | logical | FALSE | TRUE, FALSE | - |
| predict.all | logical | FALSE | TRUE, FALSE | - |
| nodes | logical | FALSE | TRUE, FALSE | - |
References
Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324 .
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRandomForest
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Method importance()
The importance scores are extracted from the slot importance.
Parameter 'importance' must be set to either "accuracy" or "gini".
Returns
Named numeric().
Examples
# Define the Learner
learner = lrn("classif.randomForest", importance = "accuracy")
print(learner)
#>
#> ── <LearnerClassifRandomForest> (classif.randomForest): Random Forest ──────────
#> • Model: -
#> • Parameters: importance=accuracy
#> • Packages: mlr3, mlr3extralearners, and randomForest
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, multiclass, oob_error, twoclass, and weights
#> • Other settings: use_weights = 'use'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#>
#> Call:
#> randomForest(formula = formula, data = data, classwt = classwt, cutoff = cutoff, importance = TRUE)
#> Type of random forest: classification
#> Number of trees: 500
#> No. of variables tried at each split: 7
#>
#> OOB estimate of error rate: 20.14%
#> Confusion matrix:
#> M R class.error
#> M 67 8 0.1066667
#> R 20 44 0.3125000
print(learner$importance())
#> V11 V49 V12 V9 V51
#> 2.582968e-02 1.692593e-02 1.153715e-02 1.098963e-02 1.023891e-02
#> V23 V20 V4 V21 V36
#> 8.566793e-03 7.802445e-03 7.325269e-03 6.450121e-03 6.251120e-03
#> V48 V1 V28 V10 V22
#> 5.773191e-03 5.362279e-03 5.131786e-03 4.532856e-03 3.940090e-03
#> V37 V17 V45 V46 V16
#> 3.818957e-03 3.789862e-03 3.636898e-03 3.501241e-03 3.499652e-03
#> V39 V25 V43 V35 V5
#> 3.309341e-03 3.170261e-03 3.095025e-03 3.063357e-03 2.993926e-03
#> V27 V26 V2 V59 V24
#> 2.754280e-03 2.736287e-03 2.701996e-03 2.542538e-03 2.230119e-03
#> V15 V38 V40 V31 V52
#> 2.037095e-03 2.015005e-03 1.941140e-03 1.857315e-03 1.840669e-03
#> V18 V44 V34 V47 V13
#> 1.830569e-03 1.794883e-03 1.674525e-03 1.628420e-03 1.612701e-03
#> V3 V41 V32 V50 V19
#> 1.513025e-03 1.436681e-03 1.368882e-03 1.304467e-03 1.252924e-03
#> V29 V54 V53 V55 V42
#> 1.230900e-03 9.412329e-04 9.075734e-04 8.308641e-04 6.562513e-04
#> V7 V14 V60 V33 V6
#> 5.836177e-04 5.268522e-04 4.818095e-04 2.587936e-04 2.542150e-04
#> V30 V56 V58 V57 V8
#> 2.676458e-05 1.486063e-05 -1.327892e-04 -1.669636e-04 -1.994749e-04
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.1884058