Skip to contents

Random forest for classification. Calls randomForest::randomForest() from randomForest.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.randomForest")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, randomForest

Parameters

IdTypeDefaultLevelsRange
ntreeinteger500\([1, \infty)\)
mtryinteger-\([1, \infty)\)
replacelogicalTRUETRUE, FALSE-
classwtuntypedNULL-
cutoffuntyped--
stratauntyped--
sampsizeuntyped--
nodesizeinteger1\([1, \infty)\)
maxnodesinteger-\([1, \infty)\)
importancecharacterFALSEaccuracy, gini, none-
localImplogicalFALSETRUE, FALSE-
proximitylogicalFALSETRUE, FALSE-
oob.proxlogical-TRUE, FALSE-
norm.voteslogicalTRUETRUE, FALSE-
do.tracelogicalFALSETRUE, FALSE-
keep.forestlogicalTRUETRUE, FALSE-
keep.inbaglogicalFALSETRUE, FALSE-
predict.alllogicalFALSETRUE, FALSE-
nodeslogicalFALSETRUE, FALSE-

References

Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324 .

See also

Author

pat-s

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRandomForest

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method importance()

The importance scores are extracted from the slot importance. Parameter 'importance' must be set to either "accuracy" or "gini".

Usage

LearnerClassifRandomForest$importance()

Returns

Named numeric().


Method oob_error()

OOB errors are extracted from the model slot err.rate.

Usage

LearnerClassifRandomForest$oob_error()

Returns

numeric(1).


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifRandomForest$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = lrn("classif.randomForest", importance = "accuracy")
print(learner)
#> 
#> ── <LearnerClassifRandomForest> (classif.randomForest): Random Forest ──────────
#> • Model: -
#> • Parameters: importance=accuracy
#> • Packages: mlr3, mlr3extralearners, and randomForest
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, multiclass, oob_error, twoclass, and weights
#> • Other settings: use_weights = 'use'

# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> 
#> Call:
#>  randomForest(formula = formula, data = data, classwt = classwt,      cutoff = cutoff, importance = TRUE) 
#>                Type of random forest: classification
#>                      Number of trees: 500
#> No. of variables tried at each split: 7
#> 
#>         OOB estimate of  error rate: 22.3%
#> Confusion matrix:
#>    M  R class.error
#> M 63 11   0.1486486
#> R 20 45   0.3076923
print(learner$importance())
#>           V11           V12           V10           V48           V36 
#>  2.505802e-02  2.046791e-02  1.279940e-02  1.103386e-02  9.627730e-03 
#>           V49           V37           V13            V9           V47 
#>  9.494261e-03  8.534463e-03  7.171843e-03  6.822402e-03  6.531058e-03 
#>           V35           V16            V4           V21           V45 
#>  5.431701e-03  5.064433e-03  5.004797e-03  4.295472e-03  4.271756e-03 
#>           V44           V31           V46           V20            V5 
#>  4.017045e-03  3.739062e-03  3.542585e-03  3.523646e-03  3.494054e-03 
#>           V17           V15           V28           V42           V23 
#>  3.171511e-03  2.985806e-03  2.621135e-03  2.588933e-03  2.557516e-03 
#>           V43            V8           V19           V52           V26 
#>  2.492363e-03  2.358806e-03  2.234797e-03  2.157868e-03  2.119380e-03 
#>           V24           V22           V51            V1           V39 
#>  1.903060e-03  1.787265e-03  1.741920e-03  1.598655e-03  1.579490e-03 
#>           V27           V41           V18           V38           V33 
#>  1.499239e-03  1.405072e-03  1.386929e-03  1.088044e-03  9.995656e-04 
#>           V32           V30           V29           V34           V25 
#>  9.409891e-04  8.767748e-04  7.145800e-04  5.537360e-04  5.339569e-04 
#>           V56           V60           V50            V2           V55 
#>  5.325721e-04  5.312732e-04  3.420097e-04  2.051570e-04  1.058654e-04 
#>           V40            V7           V57            V6           V59 
#>  8.679121e-05  8.159822e-05  3.565464e-05  1.825376e-05 -6.473598e-05 
#>           V53           V14            V3           V58           V54 
#> -7.253302e-05 -7.273310e-05 -1.060311e-04 -2.989662e-04 -5.094263e-04 

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>  0.1884058