Classification Random Forest Learner
Source:R/learner_randomForest_classif_randomForest.R
mlr_learners_classif.randomForest.RdRandom forest for classification.
Calls randomForest::randomForest() from randomForest.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, randomForest
Parameters
| Id | Type | Default | Levels | Range |
| ntree | integer | 500 | \([1, \infty)\) | |
| mtry | integer | - | \([1, \infty)\) | |
| replace | logical | TRUE | TRUE, FALSE | - |
| classwt | untyped | NULL | - | |
| cutoff | untyped | - | - | |
| strata | untyped | - | - | |
| sampsize | untyped | - | - | |
| nodesize | integer | 1 | \([1, \infty)\) | |
| maxnodes | integer | - | \([1, \infty)\) | |
| importance | character | FALSE | accuracy, gini, none | - |
| localImp | logical | FALSE | TRUE, FALSE | - |
| proximity | logical | FALSE | TRUE, FALSE | - |
| oob.prox | logical | - | TRUE, FALSE | - |
| norm.votes | logical | TRUE | TRUE, FALSE | - |
| do.trace | logical | FALSE | TRUE, FALSE | - |
| keep.forest | logical | TRUE | TRUE, FALSE | - |
| keep.inbag | logical | FALSE | TRUE, FALSE | - |
| predict.all | logical | FALSE | TRUE, FALSE | - |
| nodes | logical | FALSE | TRUE, FALSE | - |
References
Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324 .
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRandomForest
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Method importance()
The importance scores are extracted from the slot importance.
Parameter 'importance' must be set to either "accuracy" or "gini".
Returns
Named numeric().
Examples
# Define the Learner
learner = lrn("classif.randomForest", importance = "accuracy")
print(learner)
#>
#> ── <LearnerClassifRandomForest> (classif.randomForest): Random Forest ──────────
#> • Model: -
#> • Parameters: importance=accuracy
#> • Packages: mlr3, mlr3extralearners, and randomForest
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, multiclass, oob_error, twoclass, and weights
#> • Other settings: use_weights = 'use'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#>
#> Call:
#> randomForest(formula = formula, data = data, classwt = classwt, cutoff = cutoff, importance = TRUE)
#> Type of random forest: classification
#> Number of trees: 500
#> No. of variables tried at each split: 7
#>
#> OOB estimate of error rate: 15.83%
#> Confusion matrix:
#> M R class.error
#> M 66 7 0.09589041
#> R 15 51 0.22727273
print(learner$importance())
#> V11 V9 V12 V10 V49
#> 2.382875e-02 1.668207e-02 1.608134e-02 1.159193e-02 9.576056e-03
#> V52 V36 V45 V48 V4
#> 8.963090e-03 8.159337e-03 7.537245e-03 7.149507e-03 6.894683e-03
#> V21 V51 V46 V31 V28
#> 6.445169e-03 5.997816e-03 5.209493e-03 5.178557e-03 4.572038e-03
#> V47 V43 V35 V44 V8
#> 4.200710e-03 4.196568e-03 3.519247e-03 3.481304e-03 3.258415e-03
#> V5 V34 V23 V37 V18
#> 3.162712e-03 3.031498e-03 2.847312e-03 2.818026e-03 2.711452e-03
#> V1 V19 V20 V13 V42
#> 2.617988e-03 2.196979e-03 2.175167e-03 1.937023e-03 1.881348e-03
#> V55 V27 V59 V22 V15
#> 1.856870e-03 1.842756e-03 1.715753e-03 1.647219e-03 1.575191e-03
#> V6 V17 V39 V3 V33
#> 1.547863e-03 1.525171e-03 1.521633e-03 1.489231e-03 1.338413e-03
#> V58 V2 V53 V24 V41
#> 1.319250e-03 1.215733e-03 1.078399e-03 1.064438e-03 1.042686e-03
#> V25 V50 V16 V29 V26
#> 1.018819e-03 9.610177e-04 9.453136e-04 8.782772e-04 8.476237e-04
#> V38 V32 V7 V30 V14
#> 7.899557e-04 6.690081e-04 5.291047e-04 5.105496e-04 4.595949e-04
#> V60 V40 V57 V56 V54
#> 5.315788e-05 1.001384e-05 -3.003056e-04 -3.165677e-04 -5.356034e-04
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.2463768