Skip to contents

Random forest for classification. Calls randomForest::randomForest() from randomForest.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.randomForest")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, randomForest

Parameters

IdTypeDefaultLevelsRange
ntreeinteger500\([1, \infty)\)
mtryinteger-\([1, \infty)\)
replacelogicalTRUETRUE, FALSE-
classwtuntypedNULL-
cutoffuntyped--
stratauntyped--
sampsizeuntyped--
nodesizeinteger1\([1, \infty)\)
maxnodesinteger-\([1, \infty)\)
importancecharacterFALSEaccuracy, gini, none-
localImplogicalFALSETRUE, FALSE-
proximitylogicalFALSETRUE, FALSE-
oob.proxlogical-TRUE, FALSE-
norm.voteslogicalTRUETRUE, FALSE-
do.tracelogicalFALSETRUE, FALSE-
keep.forestlogicalTRUETRUE, FALSE-
keep.inbaglogicalFALSETRUE, FALSE-
predict.alllogicalFALSETRUE, FALSE-
nodeslogicalFALSETRUE, FALSE-

References

Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324 .

See also

Author

pat-s

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRandomForest

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method importance()

The importance scores are extracted from the slot importance. Parameter 'importance' must be set to either "accuracy" or "gini".

Usage

LearnerClassifRandomForest$importance()

Returns

Named numeric().


Method oob_error()

OOB errors are extracted from the model slot err.rate.

Usage

LearnerClassifRandomForest$oob_error()

Returns

numeric(1).


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifRandomForest$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = lrn("classif.randomForest", importance = "accuracy")
print(learner)
#> 
#> ── <LearnerClassifRandomForest> (classif.randomForest): Random Forest ──────────
#> • Model: -
#> • Parameters: importance=accuracy
#> • Packages: mlr3, mlr3extralearners, and randomForest
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, multiclass, oob_error, twoclass, and weights
#> • Other settings: use_weights = 'use'

# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> 
#> Call:
#>  randomForest(formula = formula, data = data, classwt = classwt,      cutoff = cutoff, importance = TRUE) 
#>                Type of random forest: classification
#>                      Number of trees: 500
#> No. of variables tried at each split: 7
#> 
#>         OOB estimate of  error rate: 20.14%
#> Confusion matrix:
#>    M  R class.error
#> M 61 11   0.1527778
#> R 17 50   0.2537313
print(learner$importance())
#>            V9           V11           V10           V12           V36 
#>  0.0180713181  0.0148050384  0.0147419427  0.0118820018  0.0101449114 
#>           V45            V4           V37           V44           V49 
#>  0.0092961158  0.0060085440  0.0053746925  0.0053183407  0.0052150340 
#>           V27           V16           V15           V31           V28 
#>  0.0048393666  0.0042279386  0.0041462608  0.0041194394  0.0040031739 
#>           V21           V54           V23           V22           V46 
#>  0.0039674058  0.0038448391  0.0033992964  0.0032633996  0.0031087306 
#>           V47           V18           V51           V43           V35 
#>  0.0030953779  0.0030760009  0.0030109480  0.0029611128  0.0028494121 
#>            V6           V48           V17           V13           V52 
#>  0.0025443554  0.0025017674  0.0024085214  0.0021478515  0.0020875486 
#>           V33            V1           V20            V7           V25 
#>  0.0017774233  0.0017226532  0.0017031321  0.0016709418  0.0016531924 
#>           V14           V30            V8           V39           V24 
#>  0.0016402806  0.0016356311  0.0016030949  0.0015990638  0.0015957039 
#>           V59           V55           V34            V2           V40 
#>  0.0015197579  0.0014373094  0.0012183962  0.0011988023  0.0011235714 
#>           V32           V26           V19           V41           V38 
#>  0.0010680665  0.0010545960  0.0009542602  0.0009417021  0.0008865382 
#>           V56            V3           V58           V42           V50 
#>  0.0008061004  0.0007774702  0.0007647918  0.0007477215  0.0004842826 
#>           V53           V29           V60           V57            V5 
#>  0.0003803477  0.0003495946  0.0003403812  0.0002553984 -0.0005100816 

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>  0.1014493