Skip to contents

Random forest for classification. Calls randomForest::randomForest() from randomForest.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.randomForest")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, randomForest

Parameters

IdTypeDefaultLevelsRange
ntreeinteger500\([1, \infty)\)
mtryinteger-\([1, \infty)\)
replacelogicalTRUETRUE, FALSE-
classwtuntypedNULL-
cutoffuntyped--
stratauntyped--
sampsizeuntyped--
nodesizeinteger1\([1, \infty)\)
maxnodesinteger-\([1, \infty)\)
importancecharacterFALSEaccuracy, gini, none-
localImplogicalFALSETRUE, FALSE-
proximitylogicalFALSETRUE, FALSE-
oob.proxlogical-TRUE, FALSE-
norm.voteslogicalTRUETRUE, FALSE-
do.tracelogicalFALSETRUE, FALSE-
keep.forestlogicalTRUETRUE, FALSE-
keep.inbaglogicalFALSETRUE, FALSE-
predict.alllogicalFALSETRUE, FALSE-
nodeslogicalFALSETRUE, FALSE-

References

Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324 .

See also

Author

pat-s

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRandomForest

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method importance()

The importance scores are extracted from the slot importance. Parameter 'importance' must be set to either "accuracy" or "gini".

Usage

LearnerClassifRandomForest$importance()

Returns

Named numeric().


Method oob_error()

OOB errors are extracted from the model slot err.rate.

Usage

LearnerClassifRandomForest$oob_error()

Returns

numeric(1).


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifRandomForest$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = lrn("classif.randomForest", importance = "accuracy")
print(learner)
#> 
#> ── <LearnerClassifRandomForest> (classif.randomForest): Random Forest ──────────
#> • Model: -
#> • Parameters: importance=accuracy
#> • Packages: mlr3, mlr3extralearners, and randomForest
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, multiclass, oob_error, twoclass, and weights
#> • Other settings: use_weights = 'use'

# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> 
#> Call:
#>  randomForest(formula = formula, data = data, classwt = classwt,      cutoff = cutoff, importance = TRUE) 
#>                Type of random forest: classification
#>                      Number of trees: 500
#> No. of variables tried at each split: 7
#> 
#>         OOB estimate of  error rate: 20.14%
#> Confusion matrix:
#>    M  R class.error
#> M 67  8   0.1066667
#> R 20 44   0.3125000
print(learner$importance())
#>           V11           V49           V12            V9           V51 
#>  2.582968e-02  1.692593e-02  1.153715e-02  1.098963e-02  1.023891e-02 
#>           V23           V20            V4           V21           V36 
#>  8.566793e-03  7.802445e-03  7.325269e-03  6.450121e-03  6.251120e-03 
#>           V48            V1           V28           V10           V22 
#>  5.773191e-03  5.362279e-03  5.131786e-03  4.532856e-03  3.940090e-03 
#>           V37           V17           V45           V46           V16 
#>  3.818957e-03  3.789862e-03  3.636898e-03  3.501241e-03  3.499652e-03 
#>           V39           V25           V43           V35            V5 
#>  3.309341e-03  3.170261e-03  3.095025e-03  3.063357e-03  2.993926e-03 
#>           V27           V26            V2           V59           V24 
#>  2.754280e-03  2.736287e-03  2.701996e-03  2.542538e-03  2.230119e-03 
#>           V15           V38           V40           V31           V52 
#>  2.037095e-03  2.015005e-03  1.941140e-03  1.857315e-03  1.840669e-03 
#>           V18           V44           V34           V47           V13 
#>  1.830569e-03  1.794883e-03  1.674525e-03  1.628420e-03  1.612701e-03 
#>            V3           V41           V32           V50           V19 
#>  1.513025e-03  1.436681e-03  1.368882e-03  1.304467e-03  1.252924e-03 
#>           V29           V54           V53           V55           V42 
#>  1.230900e-03  9.412329e-04  9.075734e-04  8.308641e-04  6.562513e-04 
#>            V7           V14           V60           V33            V6 
#>  5.836177e-04  5.268522e-04  4.818095e-04  2.587936e-04  2.542150e-04 
#>           V30           V56           V58           V57            V8 
#>  2.676458e-05  1.486063e-05 -1.327892e-04 -1.669636e-04 -1.994749e-04 

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>  0.1884058