Skip to contents

Random forest for classification. Calls randomForest::randomForest() from randomForest.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.randomForest")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, randomForest

Parameters

IdTypeDefaultLevelsRange
ntreeinteger500\([1, \infty)\)
mtryinteger-\([1, \infty)\)
replacelogicalTRUETRUE, FALSE-
classwtuntypedNULL-
cutoffuntyped--
stratauntyped--
sampsizeuntyped--
nodesizeinteger1\([1, \infty)\)
maxnodesinteger-\([1, \infty)\)
importancecharacterFALSEaccuracy, gini, none-
localImplogicalFALSETRUE, FALSE-
proximitylogicalFALSETRUE, FALSE-
oob.proxlogical-TRUE, FALSE-
norm.voteslogicalTRUETRUE, FALSE-
do.tracelogicalFALSETRUE, FALSE-
keep.forestlogicalTRUETRUE, FALSE-
keep.inbaglogicalFALSETRUE, FALSE-
predict.alllogicalFALSETRUE, FALSE-
nodeslogicalFALSETRUE, FALSE-

References

Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324 .

See also

Author

pat-s

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRandomForest

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method importance()

The importance scores are extracted from the slot importance. Parameter 'importance' must be set to either "accuracy" or "gini".

Usage

LearnerClassifRandomForest$importance()

Returns

Named numeric().


Method oob_error()

OOB errors are extracted from the model slot err.rate.

Usage

LearnerClassifRandomForest$oob_error()

Returns

numeric(1).


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifRandomForest$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = lrn("classif.randomForest", importance = "accuracy")
print(learner)
#> 
#> ── <LearnerClassifRandomForest> (classif.randomForest): Random Forest ──────────
#> • Model: -
#> • Parameters: importance=accuracy
#> • Packages: mlr3, mlr3extralearners, and randomForest
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, multiclass, oob_error, twoclass, and weights
#> • Other settings: use_weights = 'use'

# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> 
#> Call:
#>  randomForest(formula = formula, data = data, classwt = classwt,      cutoff = cutoff, importance = TRUE) 
#>                Type of random forest: classification
#>                      Number of trees: 500
#> No. of variables tried at each split: 7
#> 
#>         OOB estimate of  error rate: 15.83%
#> Confusion matrix:
#>    M  R class.error
#> M 66  7  0.09589041
#> R 15 51  0.22727273
print(learner$importance())
#>           V11            V9           V12           V10           V49 
#>  2.382875e-02  1.668207e-02  1.608134e-02  1.159193e-02  9.576056e-03 
#>           V52           V36           V45           V48            V4 
#>  8.963090e-03  8.159337e-03  7.537245e-03  7.149507e-03  6.894683e-03 
#>           V21           V51           V46           V31           V28 
#>  6.445169e-03  5.997816e-03  5.209493e-03  5.178557e-03  4.572038e-03 
#>           V47           V43           V35           V44            V8 
#>  4.200710e-03  4.196568e-03  3.519247e-03  3.481304e-03  3.258415e-03 
#>            V5           V34           V23           V37           V18 
#>  3.162712e-03  3.031498e-03  2.847312e-03  2.818026e-03  2.711452e-03 
#>            V1           V19           V20           V13           V42 
#>  2.617988e-03  2.196979e-03  2.175167e-03  1.937023e-03  1.881348e-03 
#>           V55           V27           V59           V22           V15 
#>  1.856870e-03  1.842756e-03  1.715753e-03  1.647219e-03  1.575191e-03 
#>            V6           V17           V39            V3           V33 
#>  1.547863e-03  1.525171e-03  1.521633e-03  1.489231e-03  1.338413e-03 
#>           V58            V2           V53           V24           V41 
#>  1.319250e-03  1.215733e-03  1.078399e-03  1.064438e-03  1.042686e-03 
#>           V25           V50           V16           V29           V26 
#>  1.018819e-03  9.610177e-04  9.453136e-04  8.782772e-04  8.476237e-04 
#>           V38           V32            V7           V30           V14 
#>  7.899557e-04  6.690081e-04  5.291047e-04  5.105496e-04  4.595949e-04 
#>           V60           V40           V57           V56           V54 
#>  5.315788e-05  1.001384e-05 -3.003056e-04 -3.165677e-04 -5.356034e-04 

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>  0.2463768