Skip to contents

Random forest for classification. Calls randomForest::randomForest() from randomForest.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.randomForest")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, randomForest

Parameters

IdTypeDefaultLevelsRange
ntreeinteger500\([1, \infty)\)
mtryinteger-\([1, \infty)\)
replacelogicalTRUETRUE, FALSE-
classwtuntypedNULL-
cutoffuntyped--
stratauntyped--
sampsizeuntyped--
nodesizeinteger1\([1, \infty)\)
maxnodesinteger-\([1, \infty)\)
importancecharacterFALSEaccuracy, gini, none-
localImplogicalFALSETRUE, FALSE-
proximitylogicalFALSETRUE, FALSE-
oob.proxlogical-TRUE, FALSE-
norm.voteslogicalTRUETRUE, FALSE-
do.tracelogicalFALSETRUE, FALSE-
keep.forestlogicalTRUETRUE, FALSE-
keep.inbaglogicalFALSETRUE, FALSE-
predict.alllogicalFALSETRUE, FALSE-
nodeslogicalFALSETRUE, FALSE-

References

Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324 .

See also

Author

pat-s

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRandomForest

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method importance()

The importance scores are extracted from the slot importance. Parameter 'importance' must be set to either "accuracy" or "gini".

Usage

LearnerClassifRandomForest$importance()

Returns

Named numeric().


Method oob_error()

OOB errors are extracted from the model slot err.rate.

Usage

LearnerClassifRandomForest$oob_error()

Returns

numeric(1).


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifRandomForest$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = lrn("classif.randomForest", importance = "accuracy")
print(learner)
#> 
#> ── <LearnerClassifRandomForest> (classif.randomForest): Random Forest ──────────
#> • Model: -
#> • Parameters: importance=accuracy
#> • Packages: mlr3, mlr3extralearners, and randomForest
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, multiclass, oob_error, twoclass, and weights
#> • Other settings: use_weights = 'use'

# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> 
#> Call:
#>  randomForest(formula = formula, data = data, classwt = classwt,      cutoff = cutoff, importance = TRUE) 
#>                Type of random forest: classification
#>                      Number of trees: 500
#> No. of variables tried at each split: 7
#> 
#>         OOB estimate of  error rate: 19.42%
#> Confusion matrix:
#>    M  R class.error
#> M 66  9     0.12000
#> R 18 46     0.28125
print(learner$importance())
#>           V12           V11           V10            V9           V36 
#>  2.830817e-02  2.681771e-02  2.040713e-02  1.255774e-02  1.086997e-02 
#>           V13           V46           V16            V4           V48 
#>  1.066777e-02  7.362276e-03  6.593516e-03  6.391668e-03  6.026526e-03 
#>            V5           V49           V27           V47           V20 
#>  5.880494e-03  5.281941e-03  5.016440e-03  5.006524e-03  4.873286e-03 
#>           V45           V35            V1           V21           V51 
#>  4.723813e-03  4.303053e-03  3.885434e-03  3.855166e-03  3.799537e-03 
#>           V37           V18           V17            V6           V54 
#>  3.452908e-03  3.307220e-03  2.957389e-03  2.218640e-03  2.048181e-03 
#>           V34           V28           V15           V26           V52 
#>  2.011143e-03  1.998383e-03  1.935522e-03  1.926018e-03  1.843195e-03 
#>           V31           V40            V8            V3           V32 
#>  1.708753e-03  1.607803e-03  1.566277e-03  1.517596e-03  1.411373e-03 
#>           V23           V38           V43           V39           V24 
#>  1.408796e-03  1.408439e-03  1.339702e-03  1.176253e-03  1.165961e-03 
#>           V50           V25           V22           V30            V7 
#>  1.147991e-03  9.211550e-04  8.879960e-04  8.683849e-04  7.951497e-04 
#>           V29           V14           V19           V41           V55 
#>  7.743433e-04  7.570295e-04  7.344578e-04  6.796805e-04  6.690126e-04 
#>           V33           V58           V60           V56           V59 
#>  6.663439e-04  6.165903e-04  6.058111e-04  5.519007e-04  3.659917e-04 
#>           V44            V2           V57           V42           V53 
#>  3.041334e-04  9.835204e-05  6.140361e-05 -6.348348e-07 -1.636024e-04 

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>   0.173913