Classification Random Forest Learner
Source:R/learner_randomForest_classif_randomForest.R
mlr_learners_classif.randomForest.RdRandom forest for classification.
Calls randomForest::randomForest() from randomForest.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, randomForest
Parameters
| Id | Type | Default | Levels | Range |
| ntree | integer | 500 | \([1, \infty)\) | |
| mtry | integer | - | \([1, \infty)\) | |
| replace | logical | TRUE | TRUE, FALSE | - |
| classwt | untyped | NULL | - | |
| cutoff | untyped | - | - | |
| strata | untyped | - | - | |
| sampsize | untyped | - | - | |
| nodesize | integer | 1 | \([1, \infty)\) | |
| maxnodes | integer | - | \([1, \infty)\) | |
| importance | character | FALSE | accuracy, gini, none | - |
| localImp | logical | FALSE | TRUE, FALSE | - |
| proximity | logical | FALSE | TRUE, FALSE | - |
| oob.prox | logical | - | TRUE, FALSE | - |
| norm.votes | logical | TRUE | TRUE, FALSE | - |
| do.trace | logical | FALSE | TRUE, FALSE | - |
| keep.forest | logical | TRUE | TRUE, FALSE | - |
| keep.inbag | logical | FALSE | TRUE, FALSE | - |
| predict.all | logical | FALSE | TRUE, FALSE | - |
| nodes | logical | FALSE | TRUE, FALSE | - |
References
Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324 .
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRandomForest
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Method importance()
The importance scores are extracted from the slot importance.
Parameter 'importance' must be set to either "accuracy" or "gini".
Returns
Named numeric().
Examples
# Define the Learner
learner = lrn("classif.randomForest", importance = "accuracy")
print(learner)
#>
#> ── <LearnerClassifRandomForest> (classif.randomForest): Random Forest ──────────
#> • Model: -
#> • Parameters: importance=accuracy
#> • Packages: mlr3, mlr3extralearners, and randomForest
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, multiclass, oob_error, twoclass, and weights
#> • Other settings: use_weights = 'use'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#>
#> Call:
#> randomForest(formula = formula, data = data, classwt = classwt, cutoff = cutoff, importance = TRUE)
#> Type of random forest: classification
#> Number of trees: 500
#> No. of variables tried at each split: 7
#>
#> OOB estimate of error rate: 20.14%
#> Confusion matrix:
#> M R class.error
#> M 61 11 0.1527778
#> R 17 50 0.2537313
print(learner$importance())
#> V9 V11 V10 V12 V36
#> 0.0180713181 0.0148050384 0.0147419427 0.0118820018 0.0101449114
#> V45 V4 V37 V44 V49
#> 0.0092961158 0.0060085440 0.0053746925 0.0053183407 0.0052150340
#> V27 V16 V15 V31 V28
#> 0.0048393666 0.0042279386 0.0041462608 0.0041194394 0.0040031739
#> V21 V54 V23 V22 V46
#> 0.0039674058 0.0038448391 0.0033992964 0.0032633996 0.0031087306
#> V47 V18 V51 V43 V35
#> 0.0030953779 0.0030760009 0.0030109480 0.0029611128 0.0028494121
#> V6 V48 V17 V13 V52
#> 0.0025443554 0.0025017674 0.0024085214 0.0021478515 0.0020875486
#> V33 V1 V20 V7 V25
#> 0.0017774233 0.0017226532 0.0017031321 0.0016709418 0.0016531924
#> V14 V30 V8 V39 V24
#> 0.0016402806 0.0016356311 0.0016030949 0.0015990638 0.0015957039
#> V59 V55 V34 V2 V40
#> 0.0015197579 0.0014373094 0.0012183962 0.0011988023 0.0011235714
#> V32 V26 V19 V41 V38
#> 0.0010680665 0.0010545960 0.0009542602 0.0009417021 0.0008865382
#> V56 V3 V58 V42 V50
#> 0.0008061004 0.0007774702 0.0007647918 0.0007477215 0.0004842826
#> V53 V29 V60 V57 V5
#> 0.0003803477 0.0003495946 0.0003403812 0.0002553984 -0.0005100816
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.1014493