Skip to contents

Random forest for classification. Calls randomForest::randomForest() from randomForest.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.randomForest")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, randomForest

Parameters

IdTypeDefaultLevelsRange
ntreeinteger500\([1, \infty)\)
mtryinteger-\([1, \infty)\)
replacelogicalTRUETRUE, FALSE-
classwtuntypedNULL-
cutoffuntyped--
stratauntyped--
sampsizeuntyped--
nodesizeinteger1\([1, \infty)\)
maxnodesinteger-\([1, \infty)\)
importancecharacterFALSEaccuracy, gini, none-
localImplogicalFALSETRUE, FALSE-
proximitylogicalFALSETRUE, FALSE-
oob.proxlogical-TRUE, FALSE-
norm.voteslogicalTRUETRUE, FALSE-
do.tracelogicalFALSETRUE, FALSE-
keep.forestlogicalTRUETRUE, FALSE-
keep.inbaglogicalFALSETRUE, FALSE-
predict.alllogicalFALSETRUE, FALSE-
nodeslogicalFALSETRUE, FALSE-

References

Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324 .

See also

Author

pat-s

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRandomForest

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method importance()

The importance scores are extracted from the slot importance. Parameter 'importance' must be set to either "accuracy" or "gini".

Usage

LearnerClassifRandomForest$importance()

Returns

Named numeric().


Method oob_error()

OOB errors are extracted from the model slot err.rate.

Usage

LearnerClassifRandomForest$oob_error()

Returns

numeric(1).


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifRandomForest$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = lrn("classif.randomForest", importance = "accuracy")
print(learner)
#> 
#> ── <LearnerClassifRandomForest> (classif.randomForest): Random Forest ──────────
#> • Model: -
#> • Parameters: importance=accuracy
#> • Packages: mlr3, mlr3extralearners, and randomForest
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, multiclass, oob_error, twoclass, and weights
#> • Other settings: use_weights = 'use'

# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> 
#> Call:
#>  randomForest(formula = formula, data = data, classwt = classwt,      cutoff = cutoff, importance = TRUE) 
#>                Type of random forest: classification
#>                      Number of trees: 500
#> No. of variables tried at each split: 7
#> 
#>         OOB estimate of  error rate: 19.42%
#> Confusion matrix:
#>    M  R class.error
#> M 71  6  0.07792208
#> R 21 41  0.33870968
print(learner$importance())
#>           V11           V12           V48            V9           V47 
#>  2.461241e-02  1.544716e-02  1.527828e-02  1.005108e-02  9.566834e-03 
#>           V10           V21           V49           V36           V45 
#>  8.449836e-03  8.263279e-03  7.890766e-03  6.706041e-03  5.635728e-03 
#>           V46           V52           V37           V51           V13 
#>  5.110197e-03  4.764403e-03  4.420774e-03  4.297839e-03  3.945542e-03 
#>            V4           V20           V27           V28           V16 
#>  3.943313e-03  3.920783e-03  3.346983e-03  3.284595e-03  3.184550e-03 
#>           V17            V1           V15           V23           V29 
#>  3.072806e-03  2.950673e-03  2.942748e-03  2.730094e-03  2.469644e-03 
#>           V43           V24           V18           V31           V35 
#>  2.354238e-03  2.104876e-03  1.994756e-03  1.822817e-03  1.702382e-03 
#>           V14           V19            V6           V22           V44 
#>  1.636338e-03  1.596024e-03  1.544131e-03  1.539607e-03  1.503039e-03 
#>            V8           V40           V33           V53           V30 
#>  1.466266e-03  1.333073e-03  1.326329e-03  1.325661e-03  1.073061e-03 
#>           V39           V42           V26           V32           V34 
#>  1.030703e-03  9.612238e-04  9.250498e-04  9.215604e-04  8.241843e-04 
#>           V38           V55            V2           V58           V54 
#>  8.110570e-04  6.799048e-04  6.786599e-04  6.713096e-04  5.177222e-04 
#>           V50            V3           V59           V41            V7 
#>  3.685612e-04  3.076330e-04  2.807651e-04  2.757778e-04  1.615806e-04 
#>           V57           V56            V5           V25           V60 
#>  9.529542e-05  3.843625e-05 -6.632672e-05 -2.880786e-04 -3.831219e-04 

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>  0.1449275