Classification Random Forest Learner
Source:R/learner_randomForest_classif_randomForest.R
mlr_learners_classif.randomForest.Rd
Random forest for classification.
Calls randomForest::randomForest()
from randomForest.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, randomForest
Parameters
Id | Type | Default | Levels | Range |
ntree | integer | 500 | \([1, \infty)\) | |
mtry | integer | - | \([1, \infty)\) | |
replace | logical | TRUE | TRUE, FALSE | - |
classwt | untyped | NULL | - | |
cutoff | untyped | - | - | |
strata | untyped | - | - | |
sampsize | untyped | - | - | |
nodesize | integer | 1 | \([1, \infty)\) | |
maxnodes | integer | - | \([1, \infty)\) | |
importance | character | FALSE | accuracy, gini, none | - |
localImp | logical | FALSE | TRUE, FALSE | - |
proximity | logical | FALSE | TRUE, FALSE | - |
oob.prox | logical | - | TRUE, FALSE | - |
norm.votes | logical | TRUE | TRUE, FALSE | - |
do.trace | logical | FALSE | TRUE, FALSE | - |
keep.forest | logical | TRUE | TRUE, FALSE | - |
keep.inbag | logical | FALSE | TRUE, FALSE | - |
predict.all | logical | FALSE | TRUE, FALSE | - |
nodes | logical | FALSE | TRUE, FALSE | - |
References
Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324 .
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifRandomForest
Methods
Inherited methods
mlr3::Learner$base_learner()
mlr3::Learner$configure()
mlr3::Learner$encapsulate()
mlr3::Learner$format()
mlr3::Learner$help()
mlr3::Learner$predict()
mlr3::Learner$predict_newdata()
mlr3::Learner$print()
mlr3::Learner$reset()
mlr3::Learner$selected_features()
mlr3::Learner$train()
mlr3::LearnerClassif$predict_newdata_fast()
Method importance()
The importance scores are extracted from the slot importance
.
Parameter 'importance' must be set to either "accuracy"
or "gini"
.
Returns
Named numeric()
.
Examples
# Define the Learner
learner = lrn("classif.randomForest", importance = "accuracy")
print(learner)
#>
#> ── <LearnerClassifRandomForest> (classif.randomForest): Random Forest ──────────
#> • Model: -
#> • Parameters: importance=accuracy
#> • Packages: mlr3, mlr3extralearners, and randomForest
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, multiclass, oob_error, twoclass, and weights
#> • Other settings: use_weights = 'use'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#>
#> Call:
#> randomForest(formula = formula, data = data, classwt = classwt, cutoff = cutoff, importance = TRUE)
#> Type of random forest: classification
#> Number of trees: 500
#> No. of variables tried at each split: 7
#>
#> OOB estimate of error rate: 17.27%
#> Confusion matrix:
#> M R class.error
#> M 63 10 0.1369863
#> R 14 52 0.2121212
print(learner$importance())
#> V11 V12 V9 V49 V10
#> 2.512616e-02 1.434179e-02 1.414167e-02 1.094350e-02 9.763137e-03
#> V45 V52 V27 V4 V17
#> 8.296655e-03 6.452860e-03 6.015117e-03 5.765118e-03 5.667177e-03
#> V36 V16 V18 V37 V20
#> 5.120603e-03 4.794913e-03 4.486377e-03 4.300409e-03 4.232710e-03
#> V28 V23 V48 V13 V46
#> 3.929147e-03 3.774378e-03 3.634302e-03 3.379336e-03 3.355991e-03
#> V43 V44 V21 V39 V15
#> 3.269688e-03 3.128039e-03 3.050413e-03 2.908765e-03 2.893617e-03
#> V6 V1 V14 V47 V5
#> 2.871987e-03 2.656596e-03 2.514821e-03 2.367208e-03 2.217046e-03
#> V34 V29 V42 V26 V31
#> 2.150460e-03 2.077685e-03 1.974702e-03 1.819090e-03 1.706076e-03
#> V2 V38 V30 V40 V22
#> 1.618962e-03 1.515210e-03 1.501629e-03 1.281805e-03 1.148984e-03
#> V24 V19 V32 V7 V53
#> 1.112308e-03 1.098842e-03 1.065101e-03 9.479426e-04 9.166615e-04
#> V35 V59 V58 V41 V8
#> 8.228153e-04 7.804579e-04 7.127746e-04 7.109345e-04 6.977194e-04
#> V50 V25 V3 V55 V54
#> 6.586087e-04 6.522327e-04 5.318932e-04 4.580952e-04 2.382645e-04
#> V60 V33 V57 V51 V56
#> 1.596353e-04 1.050457e-04 -1.476661e-05 -1.227495e-04 -1.452923e-04
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.1304348