Classification Random Forest Learner
Source:R/learner_randomForest_classif_randomForest.R
mlr_learners_classif.randomForest.RdRandom forest for classification.
Calls randomForest::randomForest() from randomForest.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, randomForest
Parameters
| Id | Type | Default | Levels | Range |
| ntree | integer | 500 | \([1, \infty)\) | |
| mtry | integer | - | \([1, \infty)\) | |
| replace | logical | TRUE | TRUE, FALSE | - |
| classwt | untyped | NULL | - | |
| cutoff | untyped | - | - | |
| strata | untyped | - | - | |
| sampsize | untyped | - | - | |
| nodesize | integer | 1 | \([1, \infty)\) | |
| maxnodes | integer | - | \([1, \infty)\) | |
| importance | character | FALSE | accuracy, gini, none | - |
| localImp | logical | FALSE | TRUE, FALSE | - |
| proximity | logical | FALSE | TRUE, FALSE | - |
| oob.prox | logical | - | TRUE, FALSE | - |
| norm.votes | logical | TRUE | TRUE, FALSE | - |
| do.trace | logical | FALSE | TRUE, FALSE | - |
| keep.forest | logical | TRUE | TRUE, FALSE | - |
| keep.inbag | logical | FALSE | TRUE, FALSE | - |
| predict.all | logical | FALSE | TRUE, FALSE | - |
| nodes | logical | FALSE | TRUE, FALSE | - |
References
Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324 .
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRandomForest
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Method importance()
The importance scores are extracted from the slot importance.
Parameter 'importance' must be set to either "accuracy" or "gini".
Returns
Named numeric().
Examples
# Define the Learner
learner = lrn("classif.randomForest", importance = "accuracy")
print(learner)
#>
#> ── <LearnerClassifRandomForest> (classif.randomForest): Random Forest ──────────
#> • Model: -
#> • Parameters: importance=accuracy
#> • Packages: mlr3, mlr3extralearners, and randomForest
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, multiclass, oob_error, twoclass, and weights
#> • Other settings: use_weights = 'use'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#>
#> Call:
#> randomForest(formula = formula, data = data, classwt = classwt, cutoff = cutoff, importance = TRUE)
#> Type of random forest: classification
#> Number of trees: 500
#> No. of variables tried at each split: 7
#>
#> OOB estimate of error rate: 22.3%
#> Confusion matrix:
#> M R class.error
#> M 63 11 0.1486486
#> R 20 45 0.3076923
print(learner$importance())
#> V11 V12 V10 V48 V36
#> 2.505802e-02 2.046791e-02 1.279940e-02 1.103386e-02 9.627730e-03
#> V49 V37 V13 V9 V47
#> 9.494261e-03 8.534463e-03 7.171843e-03 6.822402e-03 6.531058e-03
#> V35 V16 V4 V21 V45
#> 5.431701e-03 5.064433e-03 5.004797e-03 4.295472e-03 4.271756e-03
#> V44 V31 V46 V20 V5
#> 4.017045e-03 3.739062e-03 3.542585e-03 3.523646e-03 3.494054e-03
#> V17 V15 V28 V42 V23
#> 3.171511e-03 2.985806e-03 2.621135e-03 2.588933e-03 2.557516e-03
#> V43 V8 V19 V52 V26
#> 2.492363e-03 2.358806e-03 2.234797e-03 2.157868e-03 2.119380e-03
#> V24 V22 V51 V1 V39
#> 1.903060e-03 1.787265e-03 1.741920e-03 1.598655e-03 1.579490e-03
#> V27 V41 V18 V38 V33
#> 1.499239e-03 1.405072e-03 1.386929e-03 1.088044e-03 9.995656e-04
#> V32 V30 V29 V34 V25
#> 9.409891e-04 8.767748e-04 7.145800e-04 5.537360e-04 5.339569e-04
#> V56 V60 V50 V2 V55
#> 5.325721e-04 5.312732e-04 3.420097e-04 2.051570e-04 1.058654e-04
#> V40 V7 V57 V6 V59
#> 8.679121e-05 8.159822e-05 3.565464e-05 1.825376e-05 -6.473598e-05
#> V53 V14 V3 V58 V54
#> -7.253302e-05 -7.273310e-05 -1.060311e-04 -2.989662e-04 -5.094263e-04
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.1884058