Classification Random Forest Learner
Source:R/learner_randomForest_classif_randomForest.R
mlr_learners_classif.randomForest.RdRandom forest for classification.
Calls randomForest::randomForest() from randomForest.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, randomForest
Parameters
| Id | Type | Default | Levels | Range |
| ntree | integer | 500 | \([1, \infty)\) | |
| mtry | integer | - | \([1, \infty)\) | |
| replace | logical | TRUE | TRUE, FALSE | - |
| classwt | untyped | NULL | - | |
| cutoff | untyped | - | - | |
| strata | untyped | - | - | |
| sampsize | untyped | - | - | |
| nodesize | integer | 1 | \([1, \infty)\) | |
| maxnodes | integer | - | \([1, \infty)\) | |
| importance | character | FALSE | accuracy, gini, none | - |
| localImp | logical | FALSE | TRUE, FALSE | - |
| proximity | logical | FALSE | TRUE, FALSE | - |
| oob.prox | logical | - | TRUE, FALSE | - |
| norm.votes | logical | TRUE | TRUE, FALSE | - |
| do.trace | logical | FALSE | TRUE, FALSE | - |
| keep.forest | logical | TRUE | TRUE, FALSE | - |
| keep.inbag | logical | FALSE | TRUE, FALSE | - |
| predict.all | logical | FALSE | TRUE, FALSE | - |
| nodes | logical | FALSE | TRUE, FALSE | - |
References
Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324 .
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRandomForest
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Method importance()
The importance scores are extracted from the slot importance.
Parameter 'importance' must be set to either "accuracy" or "gini".
Returns
Named numeric().
Examples
# Define the Learner
learner = lrn("classif.randomForest", importance = "accuracy")
print(learner)
#>
#> ── <LearnerClassifRandomForest> (classif.randomForest): Random Forest ──────────
#> • Model: -
#> • Parameters: importance=accuracy
#> • Packages: mlr3, mlr3extralearners, and randomForest
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, multiclass, oob_error, twoclass, and weights
#> • Other settings: use_weights = 'use'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#>
#> Call:
#> randomForest(formula = formula, data = data, classwt = classwt, cutoff = cutoff, importance = TRUE)
#> Type of random forest: classification
#> Number of trees: 500
#> No. of variables tried at each split: 7
#>
#> OOB estimate of error rate: 19.42%
#> Confusion matrix:
#> M R class.error
#> M 66 9 0.12000
#> R 18 46 0.28125
print(learner$importance())
#> V12 V11 V10 V9 V36
#> 2.830817e-02 2.681771e-02 2.040713e-02 1.255774e-02 1.086997e-02
#> V13 V46 V16 V4 V48
#> 1.066777e-02 7.362276e-03 6.593516e-03 6.391668e-03 6.026526e-03
#> V5 V49 V27 V47 V20
#> 5.880494e-03 5.281941e-03 5.016440e-03 5.006524e-03 4.873286e-03
#> V45 V35 V1 V21 V51
#> 4.723813e-03 4.303053e-03 3.885434e-03 3.855166e-03 3.799537e-03
#> V37 V18 V17 V6 V54
#> 3.452908e-03 3.307220e-03 2.957389e-03 2.218640e-03 2.048181e-03
#> V34 V28 V15 V26 V52
#> 2.011143e-03 1.998383e-03 1.935522e-03 1.926018e-03 1.843195e-03
#> V31 V40 V8 V3 V32
#> 1.708753e-03 1.607803e-03 1.566277e-03 1.517596e-03 1.411373e-03
#> V23 V38 V43 V39 V24
#> 1.408796e-03 1.408439e-03 1.339702e-03 1.176253e-03 1.165961e-03
#> V50 V25 V22 V30 V7
#> 1.147991e-03 9.211550e-04 8.879960e-04 8.683849e-04 7.951497e-04
#> V29 V14 V19 V41 V55
#> 7.743433e-04 7.570295e-04 7.344578e-04 6.796805e-04 6.690126e-04
#> V33 V58 V60 V56 V59
#> 6.663439e-04 6.165903e-04 6.058111e-04 5.519007e-04 3.659917e-04
#> V44 V2 V57 V42 V53
#> 3.041334e-04 9.835204e-05 6.140361e-05 -6.348348e-07 -1.636024e-04
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.173913