Classification Random Forest Learner
Source:R/learner_randomForest_classif_randomForest.R
mlr_learners_classif.randomForest.Rd
Random forest for classification.
Calls randomForest::randomForest()
from randomForest.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, randomForest
Parameters
Id | Type | Default | Levels | Range |
ntree | integer | 500 | \([1, \infty)\) | |
mtry | integer | - | \([1, \infty)\) | |
replace | logical | TRUE | TRUE, FALSE | - |
classwt | untyped | NULL | - | |
cutoff | untyped | - | - | |
strata | untyped | - | - | |
sampsize | untyped | - | - | |
nodesize | integer | 1 | \([1, \infty)\) | |
maxnodes | integer | - | \([1, \infty)\) | |
importance | character | FALSE | accuracy, gini, none | - |
localImp | logical | FALSE | TRUE, FALSE | - |
proximity | logical | FALSE | TRUE, FALSE | - |
oob.prox | logical | - | TRUE, FALSE | - |
norm.votes | logical | TRUE | TRUE, FALSE | - |
do.trace | logical | FALSE | TRUE, FALSE | - |
keep.forest | logical | TRUE | TRUE, FALSE | - |
keep.inbag | logical | FALSE | TRUE, FALSE | - |
predict.all | logical | FALSE | TRUE, FALSE | - |
nodes | logical | FALSE | TRUE, FALSE | - |
References
Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324 .
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifRandomForest
Methods
Inherited methods
mlr3::Learner$base_learner()
mlr3::Learner$configure()
mlr3::Learner$encapsulate()
mlr3::Learner$format()
mlr3::Learner$help()
mlr3::Learner$predict()
mlr3::Learner$predict_newdata()
mlr3::Learner$print()
mlr3::Learner$reset()
mlr3::Learner$selected_features()
mlr3::Learner$train()
mlr3::LearnerClassif$predict_newdata_fast()
Method importance()
The importance scores are extracted from the slot importance
.
Parameter 'importance' must be set to either "accuracy"
or "gini"
.
Returns
Named numeric()
.
Examples
# Define the Learner
learner = lrn("classif.randomForest", importance = "accuracy")
print(learner)
#>
#> ── <LearnerClassifRandomForest> (classif.randomForest): Random Forest ──────────
#> • Model: -
#> • Parameters: importance=accuracy
#> • Packages: mlr3, mlr3extralearners, and randomForest
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, multiclass, oob_error, twoclass, and weights
#> • Other settings: use_weights = 'use'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#>
#> Call:
#> randomForest(formula = formula, data = data, classwt = classwt, cutoff = cutoff, importance = TRUE)
#> Type of random forest: classification
#> Number of trees: 500
#> No. of variables tried at each split: 7
#>
#> OOB estimate of error rate: 14.39%
#> Confusion matrix:
#> M R class.error
#> M 60 8 0.1176471
#> R 12 59 0.1690141
print(learner$importance())
#> V11 V12 V9 V36 V10 V48
#> 3.448115e-02 3.372397e-02 1.530611e-02 1.189177e-02 1.106419e-02 9.356790e-03
#> V49 V21 V13 V52 V20 V31
#> 8.757093e-03 7.602632e-03 7.158614e-03 6.649958e-03 6.474549e-03 6.307245e-03
#> V47 V28 V4 V37 V16 V27
#> 5.945863e-03 5.897690e-03 5.388130e-03 5.351670e-03 4.581828e-03 4.423813e-03
#> V15 V46 V14 V2 V17 V22
#> 3.614040e-03 3.441548e-03 3.434278e-03 3.096317e-03 2.884624e-03 2.816984e-03
#> V18 V43 V51 V54 V8 V53
#> 2.791509e-03 2.732561e-03 2.631786e-03 2.493405e-03 2.021486e-03 1.973944e-03
#> V45 V35 V7 V44 V3 V29
#> 1.907982e-03 1.806278e-03 1.719787e-03 1.653756e-03 1.648688e-03 1.578448e-03
#> V6 V19 V39 V40 V26 V23
#> 1.444103e-03 1.388466e-03 1.334827e-03 1.316069e-03 1.258623e-03 1.249696e-03
#> V59 V55 V30 V42 V24 V25
#> 1.201216e-03 1.113941e-03 1.045681e-03 1.029433e-03 9.891184e-04 8.833336e-04
#> V34 V50 V57 V32 V58 V60
#> 8.815794e-04 7.953702e-04 7.570283e-04 7.449713e-04 5.716226e-04 4.475982e-04
#> V33 V41 V38 V1 V5 V56
#> 4.206174e-04 4.199607e-04 3.161711e-04 2.242641e-04 7.258823e-05 6.302070e-05
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.1449275