Skip to contents

Random forest for classification. Calls randomForest::randomForest() from randomForest.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.randomForest")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, randomForest

Parameters

IdTypeDefaultLevelsRange
ntreeinteger500\([1, \infty)\)
mtryinteger-\([1, \infty)\)
replacelogicalTRUETRUE, FALSE-
classwtuntypedNULL-
cutoffuntyped--
stratauntyped--
sampsizeuntyped--
nodesizeinteger1\([1, \infty)\)
maxnodesinteger-\([1, \infty)\)
importancecharacterFALSEaccuracy, gini, none-
localImplogicalFALSETRUE, FALSE-
proximitylogicalFALSETRUE, FALSE-
oob.proxlogical-TRUE, FALSE-
norm.voteslogicalTRUETRUE, FALSE-
do.tracelogicalFALSETRUE, FALSE-
keep.forestlogicalTRUETRUE, FALSE-
keep.inbaglogicalFALSETRUE, FALSE-
predict.alllogicalFALSETRUE, FALSE-
nodeslogicalFALSETRUE, FALSE-

References

Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324 .

See also

Author

pat-s

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRandomForest

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method importance()

The importance scores are extracted from the slot importance. Parameter 'importance' must be set to either "accuracy" or "gini".

Usage

LearnerClassifRandomForest$importance()

Returns

Named numeric().


Method oob_error()

OOB errors are extracted from the model slot err.rate.

Usage

LearnerClassifRandomForest$oob_error()

Returns

numeric(1).


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifRandomForest$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = lrn("classif.randomForest", importance = "accuracy")
print(learner)
#> 
#> ── <LearnerClassifRandomForest> (classif.randomForest): Random Forest ──────────
#> • Model: -
#> • Parameters: importance=accuracy
#> • Packages: mlr3, mlr3extralearners, and randomForest
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, multiclass, oob_error, twoclass, and weights
#> • Other settings: use_weights = 'use'

# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> 
#> Call:
#>  randomForest(formula = formula, data = data, classwt = classwt,      cutoff = cutoff, importance = TRUE) 
#>                Type of random forest: classification
#>                      Number of trees: 500
#> No. of variables tried at each split: 7
#> 
#>         OOB estimate of  error rate: 13.67%
#> Confusion matrix:
#>    M  R class.error
#> M 55 10   0.1538462
#> R  9 65   0.1216216
print(learner$importance())
#>           V11           V12           V51           V37           V36 
#>  2.961915e-02  2.038097e-02  1.359420e-02  1.309458e-02  1.119992e-02 
#>           V10           V35           V21            V5            V9 
#>  1.038850e-02  8.786844e-03  8.302010e-03  8.182046e-03  7.411557e-03 
#>           V20           V27           V31           V52            V6 
#>  7.399631e-03  5.809263e-03  5.620521e-03  4.302922e-03  4.134273e-03 
#>           V28           V13           V17           V49            V8 
#>  4.126226e-03  3.975124e-03  3.885517e-03  3.746687e-03  3.185719e-03 
#>           V16           V47           V32           V44           V34 
#>  3.036852e-03  2.891373e-03  2.704739e-03  2.649754e-03  2.374604e-03 
#>           V46           V18           V48           V29           V45 
#>  2.294651e-03  2.190581e-03  2.142964e-03  1.964688e-03  1.879002e-03 
#>           V19           V23           V33           V26           V15 
#>  1.857487e-03  1.804511e-03  1.758691e-03  1.749341e-03  1.503312e-03 
#>           V24           V59            V4           V30           V25 
#>  1.478331e-03  1.304623e-03  1.289170e-03  1.225222e-03  1.199366e-03 
#>           V39           V22           V58           V40           V60 
#>  1.186566e-03  1.146700e-03  1.001019e-03  7.777476e-04  6.524044e-04 
#>           V38           V42           V41            V3            V2 
#>  6.124710e-04  6.101710e-04  5.921023e-04  5.651946e-04  5.394374e-04 
#>           V14           V54            V1           V53            V7 
#>  5.210223e-04  4.563725e-04  3.344990e-04  1.959320e-04  8.978948e-05 
#>           V43           V57           V56           V55           V50 
#>  8.653027e-05  7.855835e-05 -9.553726e-05 -4.602891e-04 -4.648362e-04 

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>  0.2028986