Skip to contents

Tree that considers K randomly chosen attributes at each node. Calls RWeka::make_Weka_classifier() from RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.random_tree")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

IdTypeDefaultLevelsRange
subsetuntyped--
na.actionuntyped--
Kinteger0\([0, \infty)\)
Minteger1\([1, \infty)\)
Vnumeric0.001\((-\infty, \infty)\)
Sinteger1\((-\infty, \infty)\)
depthinteger0\([0, \infty)\)
Ninteger0\([0, \infty)\)
UlogicalFALSETRUE, FALSE-
BlogicalFALSETRUE, FALSE-
output_debug_infologicalFALSETRUE, FALSE-
do_not_check_capabilitieslogicalFALSETRUE, FALSE-
num_decimal_placesinteger2\([1, \infty)\)
batch_sizeinteger100\([1, \infty)\)
optionsuntypedNULL-

See also

Author

damirpolat

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRandomTree

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifRandomTree$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = mlr3::lrn("classif.random_tree")
print(learner)
#> <LearnerClassifRandomTree:classif.random_tree>: Random Tree
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, RWeka
#> * Predict Types:  [response], prob
#> * Feature Types: logical, integer, numeric, factor, ordered
#> * Properties: missings, multiclass, twoclass

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> 
#> RandomTree
#> ==========
#> 
#> V8 < 0.1
#> |   V9 < 0.12
#> |   |   V10 < 0.02 : M (1/0)
#> |   |   V10 >= 0.02
#> |   |   |   V5 < 0.08 : R (23/0)
#> |   |   |   V5 >= 0.08
#> |   |   |   |   V55 < 0.01 : M (2/0)
#> |   |   |   |   V55 >= 0.01 : R (3/0)
#> |   V9 >= 0.12
#> |   |   V14 < 0.31
#> |   |   |   V43 < 0.19 : R (8/0)
#> |   |   |   V43 >= 0.19
#> |   |   |   |   V12 < 0.2 : R (1/0)
#> |   |   |   |   V12 >= 0.2 : M (5/0)
#> |   |   V14 >= 0.31
#> |   |   |   V44 < 0.15
#> |   |   |   |   V13 < 0.29 : R (1/0)
#> |   |   |   |   V13 >= 0.29
#> |   |   |   |   |   V17 < 0.9 : M (2/0)
#> |   |   |   |   |   V17 >= 0.9 : R (1/0)
#> |   |   |   V44 >= 0.15 : M (7/0)
#> V8 >= 0.1
#> |   V27 < 0.82
#> |   |   V54 < 0.02
#> |   |   |   V31 < 0.37
#> |   |   |   |   V32 < 0.45 : M (8/0)
#> |   |   |   |   V32 >= 0.45 : R (1/0)
#> |   |   |   V31 >= 0.37
#> |   |   |   |   V15 < 0.52
#> |   |   |   |   |   V47 < 0.07 : R (4/0)
#> |   |   |   |   |   V47 >= 0.07
#> |   |   |   |   |   |   V39 < 0.82
#> |   |   |   |   |   |   |   V24 < 0.8 : M (7/0)
#> |   |   |   |   |   |   |   V24 >= 0.8
#> |   |   |   |   |   |   |   |   V48 < 0.09 : R (2/0)
#> |   |   |   |   |   |   |   |   V48 >= 0.09 : M (2/0)
#> |   |   |   |   |   |   V39 >= 0.82 : R (3/0)
#> |   |   |   |   V15 >= 0.52 : R (10/0)
#> |   |   V54 >= 0.02 : M (12/0)
#> |   V27 >= 0.82
#> |   |   V11 < 0.17 : R (3/0)
#> |   |   V11 >= 0.17 : M (33/0)
#> 
#> Size of the tree : 43


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>  0.2463768