Classification Random Tree Learner
Source:R/learner_RWeka_classif_random_tree.R
mlr_learners_classif.random_tree.RdTree that considers K randomly chosen attributes at each node.
Calls RWeka::make_Weka_classifier() from RWeka.
Custom mlr3 parameters
output_debug_info:original id: output-debug-info
do_not_check_capabilities:original id: do-not-check-capabilities
num_decimal_places:original id: num-decimal-places
batch_size:original id: batch-size
Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern
Parameters
| Id | Type | Default | Levels | Range |
| subset | untyped | - | - | |
| na.action | untyped | - | - | |
| K | integer | 0 | \([0, \infty)\) | |
| M | integer | 1 | \([1, \infty)\) | |
| V | numeric | 0.001 | \((-\infty, \infty)\) | |
| S | integer | 1 | \((-\infty, \infty)\) | |
| depth | integer | 0 | \([0, \infty)\) | |
| N | integer | 0 | \([0, \infty)\) | |
| U | logical | FALSE | TRUE, FALSE | - |
| B | logical | FALSE | TRUE, FALSE | - |
| output_debug_info | logical | FALSE | TRUE, FALSE | - |
| do_not_check_capabilities | logical | FALSE | TRUE, FALSE | - |
| num_decimal_places | integer | 2 | \([1, \infty)\) | |
| batch_size | integer | 100 | \([1, \infty)\) | |
| options | untyped | NULL | - |
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRandomTree
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Method marshal()
Marshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::marshal_model().
Method unmarshal()
Unmarshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::unmarshal_model().
Examples
# Define the Learner
learner = lrn("classif.random_tree")
print(learner)
#>
#> ── <LearnerClassifRandomTree> (classif.random_tree): Random Tree ───────────────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and RWeka
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: marshal, missings, multiclass, and twoclass
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#>
#> RandomTree
#> ==========
#>
#> V9 < 0.11
#> | V32 < 0.46
#> | | V38 < 0.34
#> | | | V24 < 0.9 : R (12/0)
#> | | | V24 >= 0.9
#> | | | | V12 < 0.16 : R (1/0)
#> | | | | V12 >= 0.16 : M (1/0)
#> | | V38 >= 0.34
#> | | | V33 < 0.55 : M (7/0)
#> | | | V33 >= 0.55 : R (1/0)
#> | V32 >= 0.46 : R (17/0)
#> V9 >= 0.11
#> | V11 < 0.09 : R (5/0)
#> | V11 >= 0.09
#> | | V6 < 0.21
#> | | | V13 < 0.1 : R (3/0)
#> | | | V13 >= 0.1
#> | | | | V28 < 0.91
#> | | | | | V20 < 0.51
#> | | | | | | V25 < 0.9
#> | | | | | | | V4 < 0.02 : R (5/0)
#> | | | | | | | V4 >= 0.02
#> | | | | | | | | V18 < 0.48
#> | | | | | | | | | V46 < 0.05 : R (2/0)
#> | | | | | | | | | V46 >= 0.05
#> | | | | | | | | | | V3 < 0.03
#> | | | | | | | | | | | V2 < 0.02 : R (1/0)
#> | | | | | | | | | | | V2 >= 0.02 : M (1/0)
#> | | | | | | | | | | V3 >= 0.03 : M (7/0)
#> | | | | | | | | V18 >= 0.48 : R (5/0)
#> | | | | | | V25 >= 0.9 : M (4/0)
#> | | | | | V20 >= 0.51
#> | | | | | | V51 < 0.01
#> | | | | | | | V26 < 0.63 : M (5/0)
#> | | | | | | | V26 >= 0.63
#> | | | | | | | | V30 < 0.44
#> | | | | | | | | | V26 < 0.83
#> | | | | | | | | | | V12 < 0.38 : R (2/0)
#> | | | | | | | | | | V12 >= 0.38 : M (1/0)
#> | | | | | | | | | V26 >= 0.83 : M (3/0)
#> | | | | | | | | V30 >= 0.44 : R (3/0)
#> | | | | | | V51 >= 0.01 : M (22/0)
#> | | | | V28 >= 0.91
#> | | | | | V51 < 0 : R (1/0)
#> | | | | | V51 >= 0 : M (22/0)
#> | | V6 >= 0.21
#> | | | V31 < 0.15 : M (1/0)
#> | | | V31 >= 0.15 : R (7/0)
#>
#> Size of the tree : 49
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.2608696