Classification Random Tree Learner
mlr_learners_classif.random_tree.Rd
Tree that considers K randomly chosen attributes at each node.
Calls RWeka::make_Weka_classifier()
from RWeka.
Custom mlr3 parameters
output_debug_info
:original id: output-debug-info
do_not_check_capabilities
:original id: do-not-check-capabilities
num_decimal_places
:original id: num-decimal-places
batch_size
:original id: batch-size
Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern
Parameters
Id | Type | Default | Levels | Range |
subset | untyped | - | - | |
na.action | untyped | - | - | |
K | integer | 0 | \([0, \infty)\) | |
M | integer | 1 | \([1, \infty)\) | |
V | numeric | 0.001 | \((-\infty, \infty)\) | |
S | integer | 1 | \((-\infty, \infty)\) | |
depth | integer | 0 | \([0, \infty)\) | |
N | integer | 0 | \([0, \infty)\) | |
U | logical | FALSE | TRUE, FALSE | - |
B | logical | FALSE | TRUE, FALSE | - |
output_debug_info | logical | FALSE | TRUE, FALSE | - |
do_not_check_capabilities | logical | FALSE | TRUE, FALSE | - |
num_decimal_places | integer | 2 | \([1, \infty)\) | |
batch_size | integer | 100 | \([1, \infty)\) | |
options | untyped | NULL | - |
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifRandomTree
Examples
# Define the Learner
learner = mlr3::lrn("classif.random_tree")
print(learner)
#>
#> ── <LearnerClassifRandomTree> (classif.random_tree): Random Tree ───────────────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and RWeka
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: missings, multiclass, and twoclass
#> • Other settings: use_weights = 'error'
# Define a Task
task = mlr3::tsk("sonar")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#>
#> RandomTree
#> ==========
#>
#> V10 < 0.15
#> | V22 < 0.62 : R (24/0)
#> | V22 >= 0.62
#> | | V16 < 0.27
#> | | | V53 < 0.01
#> | | | | V33 < 0.49 : M (2/0)
#> | | | | V33 >= 0.49 : R (2/0)
#> | | | V53 >= 0.01 : R (11/0)
#> | | V16 >= 0.27
#> | | | V35 < 0.28
#> | | | | V36 < 0.11 : R (4/0)
#> | | | | V36 >= 0.11
#> | | | | | V24 < 0.79 : R (1/0)
#> | | | | | V24 >= 0.79 : M (2/0)
#> | | | V35 >= 0.28 : M (8/0)
#> V10 >= 0.15
#> | V35 < 0.26
#> | | V26 < 0.63
#> | | | V40 < 0.19 : M (4/0)
#> | | | V40 >= 0.19
#> | | | | V23 < 0.81 : R (4/0)
#> | | | | V23 >= 0.81 : M (1/0)
#> | | V26 >= 0.63
#> | | | V17 < 0.86 : M (34/0)
#> | | | V17 >= 0.86 : R (1/0)
#> | V35 >= 0.26
#> | | V23 < 0.15 : M (4/0)
#> | | V23 >= 0.15
#> | | | V54 < 0.02
#> | | | | V39 < 0.18 : R (9/0)
#> | | | | V39 >= 0.18
#> | | | | | V21 < 0.1 : M (2/0)
#> | | | | | V21 >= 0.1
#> | | | | | | V10 < 0.28
#> | | | | | | | V32 < 0.49
#> | | | | | | | | V29 < 0.65 : M (6/0)
#> | | | | | | | | V29 >= 0.65 : R (1/0)
#> | | | | | | | V32 >= 0.49
#> | | | | | | | | V57 < 0 : M (1/0)
#> | | | | | | | | V57 >= 0 : R (5/0)
#> | | | | | | V10 >= 0.28 : R (7/0)
#> | | | V54 >= 0.02 : M (6/0)
#>
#> Size of the tree : 43
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.3913043