Skip to contents

Random forest for classification. Calls randomForestSRC::rfsrc() from randomForestSRC.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.rfsrc")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”

  • Required Packages: mlr3, mlr3extralearners, randomForestSRC

Parameters

IdTypeDefaultLevelsRange
ntreeinteger500\([1, \infty)\)
mtryinteger-\([1, \infty)\)
mtry.rationumeric-\([0, 1]\)
nodesizeinteger15\([1, \infty)\)
nodedepthinteger-\([1, \infty)\)
splitrulecharacterginigini, auc, entropy-
nsplitinteger10\([0, \infty)\)
importancecharacterFALSEFALSE, TRUE, none, permute, random, anti-
block.sizeinteger10\([1, \infty)\)
bootstrapcharacterby.rootby.root, by.node, none, by.user-
samptypecharactersworswor, swr-
sampuntyped--
membershiplogicalFALSETRUE, FALSE-
sampsizeuntyped--
sampsize.rationumeric-\([0, 1]\)
na.actioncharacterna.omitna.omit, na.impute-
nimputeinteger1\([1, \infty)\)
proximitycharacterFALSEFALSE, TRUE, inbag, oob, all-
distancecharacterFALSEFALSE, TRUE, inbag, oob, all-
forest.wtcharacterFALSEFALSE, TRUE, inbag, oob, all-
xvar.wtuntyped--
split.wtuntyped--
forestlogicalTRUETRUE, FALSE-
var.usedcharacterFALSEFALSE, all.trees-
split.depthcharacterFALSEFALSE, all.trees, by.tree-
seedinteger-\((-\infty, -1]\)
do.tracelogicalFALSETRUE, FALSE-
get.treeuntyped--
outcomecharactertraintrain, test-
ptn.countinteger0\([0, \infty)\)
coresinteger1\([1, \infty)\)
save.memorylogicalFALSETRUE, FALSE-
perf.typecharacter-gmean, misclass, brier, none-
case.depthlogicalFALSETRUE, FALSE-
marginal.xvaruntypedNULL-

Custom mlr3 parameters

  • mtry: This hyperparameter can alternatively be set via the added hyperparameter mtry.ratio as mtry = max(ceiling(mtry.ratio * n_features), 1). Note that mtry and mtry.ratio are mutually exclusive.

  • sampsize: This hyperparameter can alternatively be set via the added hyperparameter sampsize.ratio as sampsize = max(ceiling(sampsize.ratio * n_obs), 1). Note that sampsize and sampsize.ratio are mutually exclusive.

  • cores: This value is set as the option rf.cores during training and is set to 1 by default.

References

Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324 .

See also

Author

RaphaelS1

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRandomForestSRC

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method importance()

The importance scores are extracted from the model slot importance, returned for 'all'.

Usage

LearnerClassifRandomForestSRC$importance()

Returns

Named numeric().


Method selected_features()

Selected features are extracted from the model slot var.used.

Note: Due to a known issue in randomForestSRC, enabling var.used = "all.trees" causes prediction to fail. Therefore, this setting should be used exclusively for feature selection purposes and not when prediction is required.

Usage

LearnerClassifRandomForestSRC$selected_features()

Returns

character().


Method oob_error()

OOB error extracted from the model slot err.rate.

Usage

LearnerClassifRandomForestSRC$oob_error()

Returns

numeric().


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifRandomForestSRC$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = lrn("classif.rfsrc", importance = "TRUE")
print(learner)
#> 
#> ── <LearnerClassifRandomForestSRC> (classif.rfsrc): Random Forest ──────────────
#> • Model: -
#> • Parameters: importance=TRUE
#> • Packages: mlr3, mlr3extralearners, and randomForestSRC
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, and factor
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, missings, multiclass, oob_error, selected_features,
#> twoclass, and weights
#> • Other settings: use_weights = 'use'

# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#>                          Sample size: 139
#>            Frequency of class labels: M=69, R=70
#>                      Number of trees: 500
#>            Forest terminal node size: 1
#>        Average no. of terminal nodes: 16.8
#> No. of variables tried at each split: 8
#>               Total no. of variables: 60
#>        Resampling used to grow trees: swor
#>     Resample size used to grow trees: 88
#>                             Analysis: RF-C
#>                               Family: class
#>                       Splitting rule: gini *random*
#>        Number of random split points: 10
#>                     Imbalanced ratio: 1.0145
#>                    (OOB) Brier score: 0.13048773
#>         (OOB) Normalized Brier score: 0.52195094
#>                            (OOB) AUC: 0.93343685
#>                       (OOB) Log-loss: 0.41807743
#>                         (OOB) PR-AUC: 0.94109969
#>                         (OOB) G-mean: 0.83343685
#>    (OOB) Requested performance error: 0.17266187, 0.13043478, 0.21428571
#> 
#> Confusion matrix:
#> 
#>           predicted
#>   observed  M  R class.error
#>          M 61  8      0.1159
#>          R 15 55      0.2143
#> 
#>       (OOB) Misclassification rate: 0.1654676
#> 
#> Random-classifier baselines (uniform):
#>    Brier: 0.25   Normalized Brier: 1   Log-loss: 0.69314718
print(learner$importance())
#>           V11           V12           V48           V10            V9 
#>  0.0727601616  0.0554490301  0.0442865980  0.0258418193  0.0234597126 
#>           V13           V49           V17            V5           V36 
#>  0.0224567452  0.0221717157  0.0219679583  0.0195737654  0.0184736399 
#>           V51           V52           V47           V18           V45 
#>  0.0179962077  0.0174704240  0.0174318548  0.0168957762  0.0167335835 
#>           V26           V37           V20           V43           V16 
#>  0.0144228477  0.0143992960  0.0140827143  0.0133658740  0.0129363565 
#>           V39            V1           V46           V42           V28 
#>  0.0122050311  0.0119355793  0.0117647015  0.0115344028  0.0107601739 
#>           V27           V21           V14            V4           V15 
#>  0.0103207935  0.0101758565  0.0101702876  0.0097462589  0.0082965333 
#>           V34           V55           V32           V29           V30 
#>  0.0082698644  0.0082572452  0.0081522653  0.0079774364  0.0077057100 
#>           V40           V31           V19            V3           V23 
#>  0.0075489744  0.0072694554  0.0072536724  0.0071540544  0.0070274658 
#>           V44           V59           V33            V6           V24 
#>  0.0065559993  0.0064152723  0.0062613785  0.0059634802  0.0059514825 
#>           V22           V53            V2            V7           V41 
#>  0.0049609898  0.0048098392  0.0047678360  0.0046565489  0.0042146896 
#>           V60           V56           V50            V8           V38 
#>  0.0041802696  0.0033384968  0.0030539185  0.0024828043  0.0021802572 
#>           V58           V35           V57           V25           V54 
#>  0.0017735872  0.0016461259  0.0016070079  0.0013388895 -0.0002812774 

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>  0.1884058