Classification Random Forest SRC Learner
Source:R/learner_randomForestSRC_classif_rfsrc.R
mlr_learners_classif.rfsrc.RdRandom forest for classification.
Calls randomForestSRC::rfsrc() from randomForestSRC.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “factor”
Required Packages: mlr3, mlr3extralearners, randomForestSRC
Parameters
| Id | Type | Default | Levels | Range |
| ntree | integer | 500 | \([1, \infty)\) | |
| mtry | integer | - | \([1, \infty)\) | |
| mtry.ratio | numeric | - | \([0, 1]\) | |
| nodesize | integer | 15 | \([1, \infty)\) | |
| nodedepth | integer | - | \([1, \infty)\) | |
| splitrule | character | gini | gini, auc, entropy | - |
| nsplit | integer | 10 | \([0, \infty)\) | |
| importance | character | FALSE | FALSE, TRUE, none, permute, random, anti | - |
| block.size | integer | 10 | \([1, \infty)\) | |
| bootstrap | character | by.root | by.root, by.node, none, by.user | - |
| samptype | character | swor | swor, swr | - |
| samp | untyped | - | - | |
| membership | logical | FALSE | TRUE, FALSE | - |
| sampsize | untyped | - | - | |
| sampsize.ratio | numeric | - | \([0, 1]\) | |
| na.action | character | na.omit | na.omit, na.impute | - |
| nimpute | integer | 1 | \([1, \infty)\) | |
| proximity | character | FALSE | FALSE, TRUE, inbag, oob, all | - |
| distance | character | FALSE | FALSE, TRUE, inbag, oob, all | - |
| forest.wt | character | FALSE | FALSE, TRUE, inbag, oob, all | - |
| xvar.wt | untyped | - | - | |
| split.wt | untyped | - | - | |
| forest | logical | TRUE | TRUE, FALSE | - |
| var.used | character | FALSE | FALSE, all.trees | - |
| split.depth | character | FALSE | FALSE, all.trees, by.tree | - |
| seed | integer | - | \((-\infty, -1]\) | |
| do.trace | logical | FALSE | TRUE, FALSE | - |
| get.tree | untyped | - | - | |
| outcome | character | train | train, test | - |
| ptn.count | integer | 0 | \([0, \infty)\) | |
| cores | integer | 1 | \([1, \infty)\) | |
| save.memory | logical | FALSE | TRUE, FALSE | - |
| perf.type | character | - | gmean, misclass, brier, none | - |
| case.depth | logical | FALSE | TRUE, FALSE | - |
| marginal.xvar | untyped | NULL | - |
Custom mlr3 parameters
mtry: This hyperparameter can alternatively be set via the added hyperparametermtry.ratioasmtry = max(ceiling(mtry.ratio * n_features), 1). Note thatmtryandmtry.ratioare mutually exclusive.sampsize: This hyperparameter can alternatively be set via the added hyperparametersampsize.ratioassampsize = max(ceiling(sampsize.ratio * n_obs), 1). Note thatsampsizeandsampsize.ratioare mutually exclusive.cores: This value is set as the optionrf.coresduring training and is set to 1 by default.
References
Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324 .
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRandomForestSRC
Methods
Inherited methods
Method importance()
The importance scores are extracted from the model slot importance, returned for
'all'.
Returns
Named numeric().
Method selected_features()
Selected features are extracted from the model slot var.used.
Note: Due to a known issue in randomForestSRC, enabling var.used = "all.trees"
causes prediction to fail. Therefore, this setting should be used exclusively
for feature selection purposes and not when prediction is required.
Examples
# Define the Learner
learner = lrn("classif.rfsrc", importance = "TRUE")
print(learner)
#>
#> ── <LearnerClassifRandomForestSRC> (classif.rfsrc): Random Forest ──────────────
#> • Model: -
#> • Parameters: importance=TRUE
#> • Packages: mlr3, mlr3extralearners, and randomForestSRC
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, and factor
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, missings, multiclass, oob_error, selected_features,
#> twoclass, and weights
#> • Other settings: use_weights = 'use'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> Sample size: 139
#> Frequency of class labels: M=75, R=64
#> Number of trees: 500
#> Forest terminal node size: 1
#> Average no. of terminal nodes: 16.738
#> No. of variables tried at each split: 8
#> Total no. of variables: 60
#> Resampling used to grow trees: swor
#> Resample size used to grow trees: 88
#> Analysis: RF-C
#> Family: class
#> Splitting rule: gini *random*
#> Number of random split points: 10
#> Imbalanced ratio: 1.1719
#> (OOB) Brier score: 0.14026364
#> (OOB) Normalized Brier score: 0.56105457
#> (OOB) AUC: 0.89083333
#> (OOB) Log-loss: 0.43548871
#> (OOB) PR-AUC: 0.89021777
#> (OOB) G-mean: 0.77136243
#> (OOB) Requested performance error: 0.20863309, 0.09333333, 0.34375
#>
#> Confusion matrix:
#>
#> predicted
#> observed M R class.error
#> M 68 7 0.0933
#> R 23 41 0.3594
#>
#> (OOB) Misclassification rate: 0.2158273
#>
#> Random-classifier baselines (uniform):
#> Brier: 0.25 Normalized Brier: 1 Log-loss: 0.69314718
print(learner$importance())
#> V11 V12 V10 V47 V46
#> 0.0608077788 0.0431731863 0.0348179926 0.0300540446 0.0297224083
#> V9 V13 V49 V48 V39
#> 0.0289149266 0.0278752393 0.0213789666 0.0193319372 0.0174217688
#> V17 V36 V5 V32 V31
#> 0.0171528887 0.0169828930 0.0141466396 0.0138174085 0.0126290555
#> V23 V18 V51 V45 V30
#> 0.0111914958 0.0109030980 0.0103241532 0.0102883671 0.0101645062
#> V59 V15 V19 V50 V4
#> 0.0100395729 0.0100014238 0.0099991410 0.0092747171 0.0087310552
#> V44 V16 V37 V14 V28
#> 0.0084041711 0.0078391196 0.0075418889 0.0072644992 0.0072215225
#> V20 V52 V21 V1 V8
#> 0.0067018694 0.0066753904 0.0065282700 0.0058015781 0.0057920878
#> V27 V3 V24 V42 V26
#> 0.0052047703 0.0051179702 0.0050896517 0.0050716193 0.0045216251
#> V38 V7 V29 V55 V6
#> 0.0045120725 0.0042463806 0.0042071757 0.0039237912 0.0037714428
#> V22 V41 V33 V60 V40
#> 0.0034867695 0.0033344057 0.0031895093 0.0021674881 0.0020057720
#> V25 V53 V58 V43 V2
#> 0.0018873246 0.0017550302 0.0017372450 0.0012917745 0.0010231096
#> V56 V34 V54 V35 V57
#> 0.0007090295 -0.0005733772 -0.0007415953 -0.0010219455 -0.0013043018
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.2463768