Classification Random Forest SRC Learner
mlr_learners_classif.rfsrc.Rd
Random forest for classification.
Calls randomForestSRC::rfsrc()
from randomForestSRC.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “factor”
Required Packages: mlr3, mlr3extralearners, randomForestSRC
Parameters
Id | Type | Default | Levels | Range |
ntree | integer | 500 | \([1, \infty)\) | |
mtry | integer | - | \([1, \infty)\) | |
mtry.ratio | numeric | - | \([0, 1]\) | |
nodesize | integer | 15 | \([1, \infty)\) | |
nodedepth | integer | - | \([1, \infty)\) | |
splitrule | character | gini | gini, auc, entropy | - |
nsplit | integer | 10 | \([0, \infty)\) | |
importance | character | FALSE | FALSE, TRUE, none, permute, random, anti | - |
block.size | integer | 10 | \([1, \infty)\) | |
bootstrap | character | by.root | by.root, by.node, none, by.user | - |
samptype | character | swor | swor, swr | - |
samp | untyped | - | - | |
membership | logical | FALSE | TRUE, FALSE | - |
sampsize | untyped | - | - | |
sampsize.ratio | numeric | - | \([0, 1]\) | |
na.action | character | na.omit | na.omit, na.impute | - |
nimpute | integer | 1 | \([1, \infty)\) | |
ntime | integer | - | \([1, \infty)\) | |
cause | integer | - | \([1, \infty)\) | |
proximity | character | FALSE | FALSE, TRUE, inbag, oob, all | - |
distance | character | FALSE | FALSE, TRUE, inbag, oob, all | - |
forest.wt | character | FALSE | FALSE, TRUE, inbag, oob, all | - |
xvar.wt | untyped | - | - | |
split.wt | untyped | - | - | |
forest | logical | TRUE | TRUE, FALSE | - |
var.used | character | FALSE | FALSE, all.trees, by.tree | - |
split.depth | character | FALSE | FALSE, all.trees, by.tree | - |
seed | integer | - | \((-\infty, -1]\) | |
do.trace | logical | FALSE | TRUE, FALSE | - |
statistics | logical | FALSE | TRUE, FALSE | - |
get.tree | untyped | - | - | |
outcome | character | train | train, test | - |
ptn.count | integer | 0 | \([0, \infty)\) | |
cores | integer | 1 | \([1, \infty)\) | |
save.memory | logical | FALSE | TRUE, FALSE | - |
perf.type | character | - | gmean, misclass, brier, none | - |
case.depth | logical | FALSE | TRUE, FALSE | - |
Custom mlr3 parameters
mtry
: This hyperparameter can alternatively be set via the added hyperparametermtry.ratio
asmtry = max(ceiling(mtry.ratio * n_features), 1)
. Note thatmtry
andmtry.ratio
are mutually exclusive.sampsize
: This hyperparameter can alternatively be set via the added hyperparametersampsize.ratio
assampsize = max(ceiling(sampsize.ratio * n_obs), 1)
. Note thatsampsize
andsampsize.ratio
are mutually exclusive.cores
: This value is set as the optionrf.cores
during training and is set to 1 by default.
References
Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324 .
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifRandomForestSRC
Methods
Method importance()
The importance scores are extracted from the model slot importance
, returned for
'all'.
Returns
Named numeric()
.
Examples
# Define the Learner
learner = mlr3::lrn("classif.rfsrc", importance = "TRUE")
print(learner)
#> <LearnerClassifRandomForestSRC:classif.rfsrc>: Random Forest
#> * Model: -
#> * Parameters: importance=TRUE
#> * Packages: mlr3, mlr3extralearners, randomForestSRC
#> * Predict Types: [response], prob
#> * Feature Types: logical, integer, numeric, factor
#> * Properties: importance, missings, multiclass, oob_error, twoclass,
#> weights
# Define a Task
task = mlr3::tsk("sonar")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> Sample size: 139
#> Frequency of class labels: 71, 68
#> Number of trees: 500
#> Forest terminal node size: 1
#> Average no. of terminal nodes: 16.456
#> No. of variables tried at each split: 8
#> Total no. of variables: 60
#> Resampling used to grow trees: swor
#> Resample size used to grow trees: 88
#> Analysis: RF-C
#> Family: class
#> Splitting rule: gini *random*
#> Number of random split points: 10
#> Imbalanced ratio: 1.0441
#> (OOB) Brier score: 0.13579259
#> (OOB) Normalized Brier score: 0.54317035
#> (OOB) AUC: 0.91476802
#> (OOB) Log-loss: 0.42747505
#> (OOB) PR-AUC: 0.91722301
#> (OOB) G-mean: 0.79767683
#> (OOB) Requested performance error: 0.1942446, 0.09859155, 0.29411765
#>
#> Confusion matrix:
#>
#> predicted
#> observed M R class.error
#> M 64 7 0.0986
#> R 20 48 0.2941
#>
#> (OOB) Misclassification rate: 0.1942446
print(learner$importance())
#> V12 V11 V9 V10 V51 V27
#> 0.059229667 0.059151047 0.034365236 0.032383005 0.021258881 0.020321391
#> V28 V5 V16 V17 V21 V23
#> 0.019302574 0.018890306 0.018320941 0.016416765 0.014565507 0.014085262
#> V15 V18 V52 V22 V4 V34
#> 0.013513907 0.013039979 0.011635813 0.011459193 0.010808692 0.010750628
#> V36 V37 V35 V57 V30 V29
#> 0.010591882 0.010439519 0.009842571 0.009304355 0.009010408 0.008995472
#> V48 V59 V33 V45 V6 V1
#> 0.008716106 0.008703562 0.008432474 0.007981899 0.007848566 0.007809665
#> V39 V13 V26 V2 V40 V49
#> 0.007546259 0.007515485 0.007293046 0.007259607 0.007230890 0.007090131
#> V3 V20 V32 V50 V58 V46
#> 0.006507296 0.006395148 0.006126454 0.005543586 0.005387892 0.005219906
#> V43 V14 V41 V38 V8 V24
#> 0.005076130 0.004811466 0.004643215 0.004520413 0.004496048 0.003630687
#> V47 V31 V60 V42 V25 V55
#> 0.003629829 0.003060482 0.002941069 0.002884857 0.002318841 0.002185735
#> V56 V44 V7 V19 V54 V53
#> 0.002037556 0.001768492 0.001741260 0.001598480 0.001018755 -0.001328697
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.1594203