Classification Linear Discriminant Analysis Learner
Source:R/learner_sparsediscrim_classif_sdlda.R
mlr_learners_classif.sdlda.Rd
Shrinkage-based Diagonal Linear Discriminant Analysis classfier.
Type of Naive Bayes classifiers that improves the estimation of the pooled variances by
using a shrinkage-based estimator of the pooled covariance matrix.
Calls sparsediscrim::lda_shrink_cov()
sparsediscrim.
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “integer”, “numeric”
Required Packages: mlr3, sparsediscrim
References
Pang H, Tong T, Zhao H (2009). “Shrinkage-Based Diagonal Discriminant Analysis and Its Applications in High-Dimensional Data.” Biometrics, 65(4), 1021–1029. ISSN 0006341X, 15410420, http://www.jstor.org/stable/20640622.
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifSdlda
Methods
Inherited methods
mlr3::Learner$base_learner()
mlr3::Learner$configure()
mlr3::Learner$encapsulate()
mlr3::Learner$format()
mlr3::Learner$help()
mlr3::Learner$predict()
mlr3::Learner$predict_newdata()
mlr3::Learner$print()
mlr3::Learner$reset()
mlr3::Learner$selected_features()
mlr3::Learner$train()
mlr3::LearnerClassif$predict_newdata_fast()
Examples
# Define the Learner
learner = lrn("classif.sdlda")
print(learner)
#>
#> ── <LearnerClassifSdlda> (classif.sdlda): Shrinkage-based Diagonal Linear Discri
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and sparsediscrim
#> • Predict Types: [response] and prob
#> • Feature Types: integer and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: multiclass and twoclass
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> Shrinkage-based Diagonal LDA
#>
#> Sample Size: 139
#> Number of Features: 60
#>
#> Classes and Prior Probabilities:
#> M (56.83%), R (43.17%)
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.4637681