Classification Stochastic Gradient Descent Learner
Source:R/learner_RWeka_classif_sgd.R
mlr_learners_classif.sgd.RdStochastic Gradient Descent for learning various linear models.
Calls RWeka::make_Weka_classifier() from RWeka.
Initial parameter values
F:Has only 2 out of 5 original loss functions: 0 = hinge loss (SVM) and 1 = log loss (logistic regression) with 0 (hinge loss) still being the default
Reason for change: this learner should only contain loss functions appropriate for classification tasks
Custom mlr3 parameters
output_debug_info:original id: output-debug-info
do_not_check_capabilities:original id: do-not-check-capabilities
num_decimal_places:original id: num-decimal-places
batch_size:original id: batch-size
Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern
Parameters
| Id | Type | Default | Levels | Range |
| subset | untyped | - | - | |
| na.action | untyped | - | - | |
| F | character | 0 | 0, 1 | - |
| L | numeric | 0.01 | \((-\infty, \infty)\) | |
| R | numeric | 1e-04 | \((-\infty, \infty)\) | |
| E | integer | 500 | \((-\infty, \infty)\) | |
| C | numeric | 0.001 | \((-\infty, \infty)\) | |
| N | logical | - | TRUE, FALSE | - |
| M | logical | - | TRUE, FALSE | - |
| S | integer | 1 | \((-\infty, \infty)\) | |
| output_debug_info | logical | FALSE | TRUE, FALSE | - |
| do_not_check_capabilities | logical | FALSE | TRUE, FALSE | - |
| num_decimal_places | integer | 2 | \([1, \infty)\) | |
| batch_size | integer | 100 | \([1, \infty)\) | |
| options | untyped | NULL | - |
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifSGD
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Method marshal()
Marshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::marshal_model().
Method unmarshal()
Unmarshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::unmarshal_model().
Examples
# Define the Learner
learner = lrn("classif.sgd")
print(learner)
#>
#> ── <LearnerClassifSGD> (classif.sgd): Stochastic Gradient Descent ──────────────
#> • Model: -
#> • Parameters: F=0
#> • Packages: mlr3 and RWeka
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: marshal, missings, and twoclass
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> Loss function: Hinge loss (SVM)
#>
#> Class =
#>
#> -1.5721 (normalized) V1
#> + -0.8529 (normalized) V10
#> + -3.2589 (normalized) V11
#> + -2.3498 (normalized) V12
#> + 1.9718 (normalized) V13
#> + -0.2455 (normalized) V14
#> + 0.713 (normalized) V15
#> + 0.4619 (normalized) V16
#> + 0.7779 (normalized) V17
#> + 1.127 (normalized) V18
#> + 0.1302 (normalized) V19
#> + -0.8101 (normalized) V2
#> + -0.1165 (normalized) V20
#> + -0.4588 (normalized) V21
#> + 0.0027 (normalized) V22
#> + -1.8628 (normalized) V23
#> + -2.3926 (normalized) V24
#> + 1.2446 (normalized) V25
#> + 1.9653 (normalized) V26
#> + -0.5576 (normalized) V27
#> + -0.7245 (normalized) V28
#> + 0.2408 (normalized) V29
#> + 0.8709 (normalized) V3
#> + -1.5448 (normalized) V30
#> + 3.4911 (normalized) V31
#> + -0.3654 (normalized) V32
#> + -1.1396 (normalized) V33
#> + 0.004 (normalized) V34
#> + 1.0919 (normalized) V35
#> + 2.3765 (normalized) V36
#> + 1.6781 (normalized) V37
#> + -0.9953 (normalized) V38
#> + -0.9738 (normalized) V39
#> + -1.7247 (normalized) V4
#> + 2.3085 (normalized) V40
#> + 0.3072 (normalized) V41
#> + -0.776 (normalized) V42
#> + 1.0499 (normalized) V43
#> + -3.104 (normalized) V44
#> + -3.2058 (normalized) V45
#> + -1.0588 (normalized) V46
#> + -0.3393 (normalized) V47
#> + -1.9879 (normalized) V48
#> + -3.9545 (normalized) V49
#> + -0.8846 (normalized) V5
#> + 4.1285 (normalized) V50
#> + -1.3528 (normalized) V51
#> + -3.1896 (normalized) V52
#> + -0.9581 (normalized) V53
#> + -2.1976 (normalized) V54
#> + 0.9903 (normalized) V55
#> + 1.8701 (normalized) V56
#> + 1.199 (normalized) V57
#> + -0.9185 (normalized) V58
#> + -0.8627 (normalized) V59
#> + -0.716 (normalized) V6
#> + -0.2578 (normalized) V60
#> + 1.9622 (normalized) V7
#> + 3.2535 (normalized) V8
#> + -1.0406 (normalized) V9
#> + 2.42
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.2318841