Classification Support Vector Machine Learner
Source:R/learner_RWeka_classif_smo.R
mlr_learners_classif.smo.RdSupport Vector classifier trained with John Platt's sequential minimal optimization algorithm.
Calls RWeka::SMO() from RWeka.
Custom mlr3 parameters
output_debug_info:original id: output-debug-info
do_not_check_capabilities:original id: do-not-check-capabilities
num_decimal_places:original id: num-decimal-places
batch_size:original id: batch-size
E_poly:original id: E
L_poly:original id: L
C_poly:original id: C
C_logistic:original id: C
R_logistic:original id: R
M_logistic:original id: M
Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern
Parameters
| Id | Type | Default | Levels | Range |
| subset | untyped | - | - | |
| na.action | untyped | - | - | |
| no_checks | logical | FALSE | TRUE, FALSE | - |
| C | numeric | 1 | \((-\infty, \infty)\) | |
| N | character | 0 | 0, 1, 2 | - |
| L | numeric | 0.001 | \((-\infty, \infty)\) | |
| P | numeric | 1e-12 | \((-\infty, \infty)\) | |
| M | logical | FALSE | TRUE, FALSE | - |
| V | integer | -1 | \((-\infty, \infty)\) | |
| W | integer | 1 | \((-\infty, \infty)\) | |
| K | character | PolyKernel | NormalizedPolyKernel, PolyKernel, Puk, RBFKernel, StringKernel | - |
| calibrator | untyped | "weka.classifiers.functions.Logistic" | - | |
| E_poly | numeric | 1 | \((-\infty, \infty)\) | |
| L_poly | logical | FALSE | TRUE, FALSE | - |
| C_poly | integer | 25007 | \((-\infty, \infty)\) | |
| C_logistic | logical | FALSE | TRUE, FALSE | - |
| R_logistic | numeric | - | \((-\infty, \infty)\) | |
| M_logistic | integer | -1 | \((-\infty, \infty)\) | |
| output_debug_info | logical | FALSE | TRUE, FALSE | - |
| do_not_check_capabilities | logical | FALSE | TRUE, FALSE | - |
| num_decimal_places | integer | 2 | \([1, \infty)\) | |
| batch_size | integer | 100 | \([1, \infty)\) | |
| options | untyped | NULL | - |
References
Platt J (1998). “Fast Training of Support Vector Machines using Sequential Minimal Optimization.” In Schoelkopf B, Burges C, Smola A (eds.), Advances in Kernel Methods - Support Vector Learning. MIT Press. http://research.microsoft.com/jplatt/smo.html.
Keerthi S, Shevade S, Bhattacharyya C, Murthy K (2001). “Improvements to Platt's SMO Algorithm for SVM Classifier Design.” Neural Computation, 13(3), 637-649.
Hastie T, Tibshirani R (1998). “Classification by Pairwise Coupling.” In Jordan MI, Kearns MJ, Solla SA (eds.), Advances in Neural Information Processing Systems, volume 10.
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifSMO
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Method marshal()
Marshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::marshal_model().
Method unmarshal()
Unmarshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::unmarshal_model().
Examples
# Define the Learner
learner = lrn("classif.smo")
print(learner)
#>
#> ── <LearnerClassifSMO> (classif.smo): Support Vector Machine ───────────────────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and RWeka
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: marshal, missings, multiclass, and twoclass
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> SMO
#>
#> Kernel used:
#> Linear Kernel: K(x,y) = <x,y>
#>
#> Classifier for classes: M, R
#>
#> BinarySMO
#>
#> Machine linear: showing attribute weights, not support vectors.
#>
#> -0.626 * (normalized) V1
#> + -0.8976 * (normalized) V10
#> + -1.1613 * (normalized) V11
#> + -1.5528 * (normalized) V12
#> + 0.1673 * (normalized) V13
#> + 0.5067 * (normalized) V14
#> + 0.0779 * (normalized) V15
#> + 0.4462 * (normalized) V16
#> + 0.1536 * (normalized) V17
#> + 0.4842 * (normalized) V18
#> + -0.0783 * (normalized) V19
#> + 0.081 * (normalized) V2
#> + -0.1655 * (normalized) V20
#> + -0.1616 * (normalized) V21
#> + -0.434 * (normalized) V22
#> + -0.8426 * (normalized) V23
#> + -0.1768 * (normalized) V24
#> + 0.6857 * (normalized) V25
#> + 0.6078 * (normalized) V26
#> + 0.0136 * (normalized) V27
#> + -0.9234 * (normalized) V28
#> + -0.58 * (normalized) V29
#> + 0.1697 * (normalized) V3
#> + 0.0155 * (normalized) V30
#> + 0.9085 * (normalized) V31
#> + -0.1211 * (normalized) V32
#> + 0.5485 * (normalized) V33
#> + 0.0692 * (normalized) V34
#> + 0.3093 * (normalized) V35
#> + 1.6156 * (normalized) V36
#> + 0.7724 * (normalized) V37
#> + -0.4802 * (normalized) V38
#> + -0.5178 * (normalized) V39
#> + -0.3957 * (normalized) V4
#> + 0.9468 * (normalized) V40
#> + -0.273 * (normalized) V41
#> + 0.0335 * (normalized) V42
#> + -0.0204 * (normalized) V43
#> + -0.8056 * (normalized) V44
#> + -1.1577 * (normalized) V45
#> + -1.0007 * (normalized) V46
#> + -0.9443 * (normalized) V47
#> + -0.7105 * (normalized) V48
#> + -0.8189 * (normalized) V49
#> + -0.9123 * (normalized) V5
#> + 0.6367 * (normalized) V50
#> + -0.5751 * (normalized) V51
#> + -0.8238 * (normalized) V52
#> + 0.1085 * (normalized) V53
#> + 0.101 * (normalized) V54
#> + 0.1749 * (normalized) V55
#> + -0.3056 * (normalized) V56
#> + 0.2595 * (normalized) V57
#> + -0.6337 * (normalized) V58
#> + -0.3532 * (normalized) V59
#> + -0.266 * (normalized) V6
#> + -0.6366 * (normalized) V60
#> + 0.2527 * (normalized) V7
#> + 0.1059 * (normalized) V8
#> + -0.3789 * (normalized) V9
#> + 1.9697
#>
#> Number of kernel evaluations: 5587 (88.242% cached)
#>
#>
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.2898551