Classification Logistic Regression Learner
Source:R/learner_stepPlr_classif_plr.R
mlr_learners_classif.stepPlr.Rd
Logistic regression with a quadratic penalization on the coefficient.
Calls stepPlr::plr()
from stepPlr.
Parameters
Id | Type | Default | Levels | Range |
cp | character | aic | aic, bic | - |
lambda | numeric | 1e-04 | \([0, \infty)\) | |
offset.coefficients | untyped | - | - | |
offset.subset | untyped | - | - |
References
Park, Young M, Hastie, Trevor (2007). “Penalized logistic regression for detecting gene interactions.” Biostatistics, 9(1), 30-50. ISSN 1465-4644, doi:10.1093/biostatistics/kxm010 , https://doi.org/10.1093/biostatistics/kxm010.
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifStepPlr
Methods
Inherited methods
mlr3::Learner$base_learner()
mlr3::Learner$configure()
mlr3::Learner$encapsulate()
mlr3::Learner$format()
mlr3::Learner$help()
mlr3::Learner$predict()
mlr3::Learner$predict_newdata()
mlr3::Learner$print()
mlr3::Learner$reset()
mlr3::Learner$selected_features()
mlr3::Learner$train()
mlr3::LearnerClassif$predict_newdata_fast()
Examples
# Define the Learner
learner = lrn("classif.stepPlr")
print(learner)
#>
#> ── <LearnerClassifStepPlr> (classif.stepPlr): Logistic Regression with a L2 Pena
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and stepPlr
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: twoclass and weights
#> • Other settings: use_weights = 'use'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#>
#> Call:
#> stepPlr::plr(x = data, y = y)
#>
#> Coefficients:
#> Intercept V1 V10 V11 V12 V13 V14 V15
#> 7.83944 -53.30613 21.73389 -23.07557 -4.83668 -13.61329 21.23878 -22.70139
#> V16 V17 V18 V19 V2 V20 V21 V22
#> 24.96828 19.64592 -18.95864 -7.40389 -0.58772 1.72990 2.12060 -5.24561
#> V23 V24 V25 V26 V27 V28 V29 V3
#> 12.80958 -29.14748 25.11416 -11.10751 -4.74611 5.62026 9.83814 101.67203
#> V30 V31 V32 V33 V34 V35 V36 V37
#> -36.74626 55.47357 -39.99495 17.34949 12.23398 -20.87569 17.62340 7.80340
#> V38 V39 V4 V40 V41 V42 V43 V44
#> -7.00122 -5.78336 -96.63365 21.73165 -10.89288 1.22422 3.27452 -13.69201
#> V45 V46 V47 V48 V49 V5 V50 V51
#> -0.77063 -8.48262 -2.14851 -44.30262 -42.73198 18.86789 94.57159 -35.93716
#> V52 V53 V54 V55 V56 V57 V58 V59
#> -40.36407 -13.19256 -31.77900 -16.52775 6.00983 12.41239 -29.08128 -46.52846
#> V6 V60 V7 V8 V9
#> -22.26047 -35.34253 30.73011 5.98756 -22.63066
#>
#> Null deviance: 192.69 on 138 degrees of freedom
#> Residual deviance: 16.4 on 92.72 degrees of freedom
#> Score: deviance + 4.9 * df = 244.74
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.1884058