Skip to contents

Logistic regression with a quadratic penalization on the coefficient. Calls stepPlr::plr() from stepPlr.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.stepPlr")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, stepPlr

Parameters

IdTypeDefaultLevelsRange
cpcharacteraicaic, bic-
lambdanumeric1e-04\([0, \infty)\)
offset.coefficientsuntyped--
offset.subsetuntyped--

References

Park, Young M, Hastie, Trevor (2007). “Penalized logistic regression for detecting gene interactions.” Biostatistics, 9(1), 30-50. ISSN 1465-4644, doi:10.1093/biostatistics/kxm010 , https://doi.org/10.1093/biostatistics/kxm010.

See also

Author

annanzrv

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifStepPlr

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifStepPlr$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = lrn("classif.stepPlr")
print(learner)
#> 
#> ── <LearnerClassifStepPlr> (classif.stepPlr): Logistic Regression with a L2 Pena
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and stepPlr
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: twoclass and weights
#> • Other settings: use_weights = 'use'

# Define a Task
task = tsk("sonar")

# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> 
#> Call:
#> stepPlr::plr(x = data, y = y)
#> 
#> Coefficients:
#> Intercept        V1       V10       V11       V12       V13       V14       V15 
#>  20.72548 -44.66206  24.47940 -17.23185 -37.17373  12.98470  -2.26533  -1.49677 
#>       V16       V17       V18       V19        V2       V20       V21       V22 
#>   2.04230  18.57096  -6.22881  -0.31363  13.30293 -17.09957  36.68605 -49.22700 
#>       V23       V24       V25       V26       V27       V28       V29        V3 
#>  39.03478 -40.42552   7.88783  12.26937  -9.97476   8.65331  -2.01822  59.16112 
#>       V30       V31       V32       V33       V34       V35       V36       V37 
#> -25.74263  41.60085 -24.43688   0.99637  18.45338 -22.55342  15.70787   9.96877 
#>       V38       V39        V4       V40       V41       V42       V43       V44 
#>   2.16387 -26.57257 -35.03661  29.81597 -11.82083  -9.05245  -2.17332  -4.05790 
#>       V45       V46       V47       V48       V49        V5       V50       V51 
#>  -4.55056  26.35775  -8.57941 -47.30242 -59.15887   9.54309  47.19958 -79.42288 
#>       V52       V53       V54       V55       V56       V57       V58       V59 
#> -83.46856 -45.96075   0.14465   5.86341   4.31997 -34.96994 -57.18099 -16.21064 
#>        V6       V60        V7        V8        V9 
#> -29.38710   3.81736  41.60627  21.88404 -51.65904 
#> 
#>     Null deviance: 192.52 on 138 degrees of freedom
#> Residual deviance: 27.89 on 91.18 degrees of freedom
#>             Score: deviance + 4.9 * df = 263.83 


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>  0.1594203