Skip to contents

Logistic regression with a quadratic penalization on the coefficient. Calls stepPlr::plr() from stepPlr.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.stepPlr")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, stepPlr

Parameters

IdTypeDefaultLevelsRange
cpcharacteraicaic, bic-
lambdanumeric1e-04\([0, \infty)\)
offset.coefficientsuntyped--
offset.subsetuntyped--

References

Park, Young M, Hastie, Trevor (2007). “Penalized logistic regression for detecting gene interactions.” Biostatistics, 9(1), 30-50. ISSN 1465-4644, doi:10.1093/biostatistics/kxm010 , https://doi.org/10.1093/biostatistics/kxm010.

See also

Author

annanzrv

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifStepPlr

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifStepPlr$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = lrn("classif.stepPlr")
print(learner)
#> 
#> ── <LearnerClassifStepPlr> (classif.stepPlr): Logistic Regression with a L2 Pena
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and stepPlr
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: twoclass and weights
#> • Other settings: use_weights = 'use'

# Define a Task
task = tsk("sonar")

# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> 
#> Call:
#> stepPlr::plr(x = data, y = y)
#> 
#> Coefficients:
#> Intercept        V1       V10       V11       V12       V13       V14       V15 
#>  16.62647  22.23310  34.45043 -35.82115 -17.98365   3.30356   0.43898  -3.45136 
#>       V16       V17       V18       V19        V2       V20       V21       V22 
#>   0.30419   9.46471   2.75808   2.36915   9.72725 -15.51000  16.81921 -23.47838 
#>       V23       V24       V25       V26       V27       V28       V29        V3 
#>  11.63353 -17.93427  10.91273 -10.76655  25.49661 -27.64955  21.13296  28.85149 
#>       V30       V31       V32       V33       V34       V35       V36       V37 
#> -29.08509  34.57899 -15.17701  -5.53282  16.43270 -15.09891  23.00982   0.04860 
#>       V38       V39        V4       V40       V41       V42       V43       V44 
#>  -6.73036 -14.72206 -23.72117  17.30869 -10.30920   9.66903 -22.71148   6.03320 
#>       V45       V46       V47       V48       V49        V5       V50       V51 
#> -12.15504  28.14241 -10.69666 -53.03781 -49.76878  -9.73969 106.22408 -17.15358 
#>       V52       V53       V54       V55       V56       V57       V58       V59 
#> -85.72261  -5.01430  24.40116  29.09395  32.17485   2.25727 -46.01246 -40.20464 
#>        V6       V60        V7        V8        V9 
#> -27.10769  35.04450  42.82827  10.32960 -38.34715 
#> 
#>     Null deviance: 192.34 on 138 degrees of freedom
#> Residual deviance: 25.51 on 92.09 degrees of freedom
#>             Score: deviance + 4.9 * df = 256.99 


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> classif.ce 
#>   0.173913