Classification Logistic Regression Learner
Source:R/learner_stepPlr_classif_plr.R
mlr_learners_classif.stepPlr.RdLogistic regression with a quadratic penalization on the coefficient.
Calls stepPlr::plr() from stepPlr.
Parameters
| Id | Type | Default | Levels | Range |
| cp | character | aic | aic, bic | - |
| lambda | numeric | 1e-04 | \([0, \infty)\) | |
| offset.coefficients | untyped | - | - | |
| offset.subset | untyped | - | - |
References
Park, Young M, Hastie, Trevor (2007). “Penalized logistic regression for detecting gene interactions.” Biostatistics, 9(1), 30-50. ISSN 1465-4644, doi:10.1093/biostatistics/kxm010 , https://doi.org/10.1093/biostatistics/kxm010.
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifStepPlr
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerClassif$predict_newdata_fast()
Examples
# Define the Learner
learner = lrn("classif.stepPlr")
print(learner)
#>
#> ── <LearnerClassifStepPlr> (classif.stepPlr): Logistic Regression with a L2 Pena
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and stepPlr
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: twoclass and weights
#> • Other settings: use_weights = 'use'
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#>
#> Call:
#> stepPlr::plr(x = data, y = y)
#>
#> Coefficients:
#> Intercept V1 V10 V11 V12 V13 V14 V15
#> 20.72548 -44.66206 24.47940 -17.23185 -37.17373 12.98470 -2.26533 -1.49677
#> V16 V17 V18 V19 V2 V20 V21 V22
#> 2.04230 18.57096 -6.22881 -0.31363 13.30293 -17.09957 36.68605 -49.22700
#> V23 V24 V25 V26 V27 V28 V29 V3
#> 39.03478 -40.42552 7.88783 12.26937 -9.97476 8.65331 -2.01822 59.16112
#> V30 V31 V32 V33 V34 V35 V36 V37
#> -25.74263 41.60085 -24.43688 0.99637 18.45338 -22.55342 15.70787 9.96877
#> V38 V39 V4 V40 V41 V42 V43 V44
#> 2.16387 -26.57257 -35.03661 29.81597 -11.82083 -9.05245 -2.17332 -4.05790
#> V45 V46 V47 V48 V49 V5 V50 V51
#> -4.55056 26.35775 -8.57941 -47.30242 -59.15887 9.54309 47.19958 -79.42288
#> V52 V53 V54 V55 V56 V57 V58 V59
#> -83.46856 -45.96075 0.14465 5.86341 4.31997 -34.96994 -57.18099 -16.21064
#> V6 V60 V7 V8 V9
#> -29.38710 3.81736 41.60627 21.88404 -51.65904
#>
#> Null deviance: 192.52 on 138 degrees of freedom
#> Residual deviance: 27.89 on 91.18 degrees of freedom
#> Score: deviance + 4.9 * df = 263.83
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> classif.ce
#> 0.1594203