Skip to contents

Instance based algorithm: K-nearest neighbours regression. Calls RWeka::IBk() from RWeka.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.IBk")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, RWeka

Parameters

IdTypeDefaultLevelsRange
subsetuntyped--
na.actionuntyped--
weightcharacter-I, F-
Kinteger1\([1, \infty)\)
ElogicalFALSETRUE, FALSE-
Winteger0\([0, \infty)\)
XlogicalFALSETRUE, FALSE-
AcharacterLinearNNSearchBallTree, CoverTree, FilteredNeighbourSearch, KDTree, LinearNNSearch-
output_debug_infologicalFALSETRUE, FALSE-
do_not_check_capabilitieslogicalFALSETRUE, FALSE-
num_decimal_placesinteger2\([1, \infty)\)
batch_sizeinteger100\([1, \infty)\)
optionsuntypedNULL-

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

  • weight:

    • original id: I and F

  • Reason for change: original I and F params are interdependent (I can only be TRUE when F is FALSE and vice versa). The easiest way to encode this is to combine I and F into one factor param.

References

Aha, W D, Kibler, Dennis, Albert, K M (1991). “Instance-based learning algorithms.” Machine learning, 6(1), 37–66.

See also

Author

henrifnk

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrIBk

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerRegrIBk$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = mlr3::lrn("regr.IBk")
print(learner)
#> <LearnerRegrIBk:regr.IBk>: K-nearest neighbour
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3extralearners, RWeka
#> * Predict Types:  [response]
#> * Feature Types: integer, numeric, factor, ordered
#> * Properties: -

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> IB1 instance-based classifier
#> using 1 nearest neighbour(s) for classification
#> 


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> regr.mse 
#> 9.652727