Accelerated oblique random regression forest.
Calls aorsf::orsf() from aorsf.
Note that although the learner has the property "missing" and it can in
principle deal with missing values, the behaviour has to be configured using
the parameter na_action.
Initial parameter values
n_thread: This parameter is initialized to 1 (default is 0) to avoid conflicts with the mlr3 parallelization.pred_simplifyhas to be TRUE, otherwise response is NA in prediction
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrObliqueRandomForest
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerRegr$predict_newdata_fast()
Method oob_error()
OOB concordance error extracted from the model slot
eval_oobag$stat_values
Examples
# Define the Learner
learner = lrn("regr.aorsf", importance = "anova")
print(learner)
#>
#> ── <LearnerRegrObliqueRandomForest> (regr.aorsf): Oblique Random Forest Regresso
#> • Model: -
#> • Parameters: importance=anova, n_thread=1
#> • Packages: mlr3, mlr3extralearners, and aorsf
#> • Predict Types: [response]
#> • Feature Types: integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, missings, oob_error, and weights
#> • Other settings: use_weights = 'use'
# Define a Task
task = tsk("mtcars")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> ---------- Oblique random regression forest
#>
#> Linear combinations: Linear regression
#> N observations: 21
#> N trees: 500
#> N predictors total: 10
#> N predictors per node: 4
#> Average leaves per tree: 3.252
#> Min observations in leaf: 5
#> OOB stat value: 0.59
#> OOB stat type: RSQ
#> Variable importance: anova
#>
#> -----------------------------------------
print(learner$importance())
#> wt hp carb cyl am drat disp
#> 0.16573034 0.05526316 0.04469274 0.03289474 0.02694611 0.02556818 0.02528090
#> qsec gear vs
#> 0.02362205 0.02222222 0.01200000
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> regr.mse
#> 11.58313