Categorical Regression Splines.
Calls crs::crs()
from crs.
Parameters
Id | Type | Default | Levels | Range |
degree | integer | 3 | \([0, \infty)\) | |
segments | integer | 1 | \([1, \infty)\) | |
include | integer | - | \((-\infty, \infty)\) | |
lambda | untyped | - | - | |
lambda.discrete | logical | FALSE | TRUE, FALSE | - |
lambda.discrete.num | integer | 100 | \([0, \infty)\) | |
cv | character | nomad | nomad, exhaustive, none | - |
cv.threshold | integer | 10000 | \([0, \infty)\) | |
cv.func | character | cv.ls | cv.ls, cv.gcv, cv.aic | - |
kernel | logical | TRUE | TRUE, FALSE | - |
degree.max | integer | 10 | \([0, \infty)\) | |
segments.max | integer | 10 | \([1, \infty)\) | |
degree.min | integer | 0 | \([0, \infty)\) | |
segments.min | integer | 1 | \([1, \infty)\) | |
cv.df.min | integer | 1 | \((-\infty, \infty)\) | |
complexity | character | degree-knots | degree-knots, degree, knots | - |
knots | character | quantiles | quantiles, uniform, auto | - |
basis | character | auto | auto, additive, tensor, glp | - |
prune | logical | FALSE | TRUE, FALSE | - |
restarts | integer | 0 | \([0, \infty)\) | |
nmulti | integer | 5 | \([0, \infty)\) | |
singular.ok | logical | FALSE | TRUE, FALSE | - |
deriv | integer | 0 | \([0, \infty)\) | |
data.return | logical | FALSE | TRUE, FALSE | - |
model.return | logical | FALSE | TRUE, FALSE | - |
random.seed | integer | - | \((-\infty, \infty)\) | |
tau | numeric | - | \([0, 1]\) | |
initial.mesh.size.real | untyped | - | - | |
initial.mesh.size.integer | untyped | - | - | |
max.bb.eval | untyped | - | - | |
min.mesh.size.real | untyped | - | - | |
min.mesh.size.integer | untyped | - | - | |
min.poll.size.real | untyped | - | - | |
min.poll.size.integer | untyped | - | - | |
opts | untyped | - | - |
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerRegr
-> LearnerRegrCrs
Methods
Inherited methods
mlr3::Learner$base_learner()
mlr3::Learner$configure()
mlr3::Learner$encapsulate()
mlr3::Learner$format()
mlr3::Learner$help()
mlr3::Learner$predict()
mlr3::Learner$predict_newdata()
mlr3::Learner$print()
mlr3::Learner$reset()
mlr3::Learner$selected_features()
mlr3::Learner$train()
mlr3::LearnerRegr$predict_newdata_fast()
Examples
# Define the Learner
learner = lrn("regr.crs")
print(learner)
#>
#> ── <LearnerRegrCrs> (regr.crs): Regression Splines ─────────────────────────────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and crs
#> • Predict Types: [response] and se
#> • Feature Types: integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: weights
#> • Other settings: use_weights = 'use'
# Define a Task
task = tsk("mtcars")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
#> Calling NOMAD (Nonsmooth Optimization by Mesh Adaptive Direct Search)
#>
#> starting point # 0: ( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 )
#> starting point # 1: ( 0 0 1 7 5 1 6 0 0 1 4 5 8 7 1 3 6 6 1 1 )
#> starting point # 2: ( 0 0 1 9 8 1 1 3 0 3 8 6 3 6 4 5 2 6 7 7 )
#> starting point # 3: ( 0 2 0 5 1 0 8 8 0 6 3 2 6 2 9 9 8 2 9 9 )
#> starting point # 4: ( 0 1 0 0 6 1 4 5 0 9 7 9 4 3 6 7 5 9 4 3 )
#>
#>
fv = 16.87812
fv = 12.30705
fv = 37613.83
fv = 14.84852
fv = 1.340781e+154
fv = 20.15118
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 192.591
fv = 12.30705
fv = 1.340781e+154
fv = 414.6307
fv = 20.15118
fv = 1.340781e+154
fv = 19.88036
fv = 19.88036
fv = 2374.487
fv = 1.340781e+154
fv = 1.340781e+154
fv = 11.94029
fv = 19.16367
fv = 1.340781e+154
fv = 12.15192
fv = 18.44334
fv = 15.25379
fv = 18.38651
fv = 1700678520
fv = 12917304014
fv = 1.340781e+154
fv = 11.34247
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 17.975
fv = 1.340781e+154
fv = 1.340781e+154
fv = 15.60594
fv = 12.57825
fv = 13.35751
fv = 90854508
fv = 9.730019
fv = 1.340781e+154
fv = 14.23537
fv = 11.79504
fv = 15.12149
fv = 18.49656
fv = 10.41683
fv = 11.9777
fv = 13.25131
fv = 14.9289
fv = 576161208
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 11.10385
fv = 10.19442
fv = 1172.215
fv = 14.81487
fv = 9.483537
fv = 390.444
fv = 1.340781e+154
fv = 23.29027
fv = 1.340781e+154
fv = 29.03164
fv = 17.75741
fv = 17.75741
fv = 23.08851
fv = 22.83265
fv = 9.590859
fv = 10.33328
fv = 1.340781e+154
fv = 1.340781e+154
fv = 54.70335
fv = 54.00021
fv = 1.340781e+154
fv = 9.674154
fv = 12.37815
fv = 9.483537
fv = 1.340781e+154
fv = 8195.38
fv = 53.06178
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 11.30433
fv = 130592
fv = 12.26468
fv = 14.28373
fv = 14.5037
fv = 23.97869
fv = 8044.477
fv = 1270.246
fv = 1.340781e+154
fv = 13.60664
fv = 9.023593
fv = 1.340781e+154
fv = 1.340781e+154
fv = 9.023593
fv = 11.5612
fv = 1.340781e+154
fv = 8.55907
fv = 1.340781e+154
fv = 8.99439
fv = 9.796798
fv = 1.340781e+154
fv = 9.657372
fv = 1.340781e+154
fv = 7.930895
fv = 7.930895
fv = 1.340781e+154
fv = 13.68106
fv = 7.930895
fv = 41170.44
fv = 7.930895
fv = 12.22207
fv = 9.363273
fv = 13.63359
fv = 9.235596
fv = 1.340781e+154
fv = 8.123371
fv = 11.55009
fv = 7.930895
fv = 7.930895
fv = 1.340781e+154
fv = 435.9523
fv = 564715.9
fv = 8.767212
fv = 10.3033
fv = 7.930895
fv = 21.93675
fv = 6684.644
fv = 11966.02
fv = 1.340781e+154
fv = 9.730019
fv = 7.930895
fv = 8.55412
fv = 7.930895
fv = 9.06122
fv = 11.799
fv = 9.737051
fv = 7.994215
fv = 9.213287
fv = 7.426865
fv = 12.98477
fv = 1.340781e+154
fv = 9.791192
fv = 1.340781e+154
fv = 7.426865
fv = 7.505963
fv = 7.426865
fv = 8.239765
fv = 13.9796
fv = 8.515724
fv = 8.606913
fv = 7.426865
fv = 13.34509
fv = 9.289518
fv = 7.162061
fv = 1.340781e+154
fv = 10.45164
fv = 10.748
fv = 8535.908
fv = 7.162061
fv = 7.933225
fv = 47.10672
fv = 9.357684
fv = 13.73213
#> Warning: number of rows of result is not a multiple of vector length (arg 2)
#>
fv = 16.15969
fv = 8.43296
fv = 8.962774
fv = 7.162061
fv = 7.426865
fv = 9.872529
fv = 12.13124
fv = 7.162061
fv = 8.843794
fv = 19.8523
fv = 7.162061
fv = 7.162061
fv = 1.340781e+154
fv = 1.340781e+154
fv = 8.036887
fv = 7.098716
fv = 7.098716
fv = 1.340781e+154
fv = 8.036887
fv = 10.56117
fv = 7.902879
fv = 8.534685
fv = 1.340781e+154
fv = 7.098716
fv = 7.1213
fv = 7.098716
fv = 7.098716
fv = 1.340781e+154
fv = 7.098716
fv = 7.162061
fv = 8.107568
fv = 8.533431
fv = 1.340781e+154
fv = 1.340781e+154
fv = 7.456042
fv = 7.974262
fv = 13.14433
fv = 1.340781e+154
fv = 9.168962
fv = 7.098716
fv = 1.340781e+154
fv = 8.036614
fv = 9.279702
fv = 7.098716
fv = 7.1213
fv = 7.098716
fv = 7.098716
fv = 7.098716
fv = 7.1213
fv = 7.162061
fv = 7.505963
fv = 8.573817
fv = 7.974262
fv = 7.098716
fv = 9.091616
fv = 8.107568
fv = 8.190751
fv = 12.96077
fv = 7.902879
fv = 7.099024
fv = 12.34068
fv = 10.56366
fv = 1.340781e+154
fv = 7.422484
fv = 7.098716
fv = 7.098716
fv = 7.099024
fv = 7.505963
fv = 9.894293
fv = 11.5933
fv = 12.34068
fv = 9.228118
run # 0: f=7.098715926
#>
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1513.862
fv = 234195.1
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1058.53
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 116.6614
fv = 65852.14
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 60.06887
fv = 1408231039
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.539098e-21
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1357.114
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 31439.05
fv = 1.340781e+154
fv = 1.539098e-21
fv = 1.340781e+154
fv = 1.539098e-21
fv = 1.340781e+154
fv = 1.340781e+154
fv = 3718.267
fv = 4433.231
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.539098e-21
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.539098e-21
fv = 1.340781e+154
fv = 1.340781e+154
fv = 628.6173
fv = 1.340781e+154
fv = 14.23592
fv = 162756.6
fv = 1.340781e+154
fv = 7081.471
fv = 18.60418
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.539098e-21
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.539098e-21
fv = 1.539098e-21
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 470.5545
fv = 1.340781e+154
fv = 14.00566
fv = 1555.159
fv = 12.8734
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.539098e-21
fv = 1.539098e-21
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.539098e-21
fv = 1.539098e-21
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 40.30478
run # 1: f=1.539097571e-21
#>
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 12.91947
fv = 33.4136
fv = 1.340781e+154
fv = 1.340781e+154
fv = 12.91947
fv = 15.4865
fv = 8.577328
fv = 39.71261
fv = 12.52865
fv = 6.487413
fv = 15460.64
fv = 307.2381
fv = 1.340781e+154
fv = 1.340781e+154
fv = 13.17611
fv = 202.776
fv = 1.913691e-17
fv = 1.340781e+154
fv = 11.5043
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 47390495
fv = 1.340781e+154
fv = 13.62981
fv = 14.85084
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.913691e-17
fv = 1.340781e+154
fv = 2.127836e-18
fv = 2898.987
fv = 1.340781e+154
fv = 14.11436
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 10227.52
fv = 1.340781e+154
fv = 2.127836e-18
fv = 457049.4
fv = 2898.987
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 14.2692
fv = 1.340781e+154
fv = 2.127836e-18
fv = 2.127836e-18
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.720824e+12
fv = 2.127836e-18
fv = 2.127836e-18
fv = 1.340781e+154
fv = 646484.3
fv = 1.340781e+154
fv = 1.340781e+154
fv = 2.127836e-18
fv = 1.340781e+154
fv = 1.340781e+154
fv = 2.127836e-18
fv = 1.340781e+154
fv = 1.340781e+154
fv = 17.9124
fv = 5517.094
fv = 1.340781e+154
fv = 11.01095
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 2.127836e-18
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 2.127836e-18
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 2.127836e-18
fv = 2.127836e-18
fv = 2.127836e-18
fv = 2.127836e-18
fv = 8.843535
fv = 1.340781e+154
fv = 8.843535
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 2.127836e-18
fv = 2.127836e-18
fv = 2.127836e-18
fv = 2.127836e-18
fv = 1.340781e+154
fv = 1.387474e-17
run # 2: f=2.12783559e-18
#>
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 16.35535
fv = 33.4136
fv = 1.340781e+154
fv = 1.340781e+154
fv = 13.43223
fv = 13.01454
fv = 13.01454
fv = 1.340781e+154
fv = 1.340781e+154
fv = 13.01454
fv = 33.4136
fv = 66400723
fv = 13.01454
fv = 13.01454
fv = 1.340781e+154
fv = 1.340781e+154
fv = 13.01454
fv = 3455.836
fv = 8947354673
fv = 1.340781e+154
fv = 1.340781e+154
fv = 13.01454
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 12.7655
fv = 12.7655
fv = 1.340781e+154
fv = 12.7655
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 13.01454
fv = 12.7655
fv = 93704376
fv = 31.79213
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 5.998629
fv = 5.723847e-22
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 5.723847e-22
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 28.54921
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 3.501198e-21
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1076.463
fv = 1.340781e+154
fv = 8619379
fv = 1.340781e+154
fv = 1.340781e+154
fv = 8619379
fv = 8619379
fv = 68.41097
fv = 1.340781e+154
fv = 102.2264
fv = 1.340781e+154
fv = 40.49876
fv = 1.340781e+154
fv = 1696.098
fv = 33.4136
fv = 13172.34
fv = 1.340781e+154
fv = 11674140
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.791108e-21
fv = 1076.463
fv = 1.791108e-21
fv = 1.340781e+154
fv = 5.723847e-22
fv = 1.340781e+154
fv = 2.978308e-20
fv = 1.340781e+154
fv = 181126.4
fv = 7.049295e-21
fv = 1.340781e+154
fv = 1.340781e+154
fv = 31.80521
fv = 26.00645
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 5.723847e-22
fv = 5.723847e-22
fv = 1.340781e+154
fv = 5.723847e-22
fv = 5.723847e-22
fv = 1.340781e+154
fv = 41.87618
fv = 1011.687
fv = 793.7226
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 5.723847e-22
fv = 1.340781e+154
fv = 5.723847e-22
fv = 11410.32
run # 3: f=5.7238471e-22
#>
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 2733.69
fv = 33.4136
fv = 1.340781e+154
fv = 1.340781e+154
fv = 22.98036
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 26.01907
fv = 2761858
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 9.962728
fv = 2754.24
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 11.55542
fv = 1.340781e+154
fv = 444.2039
fv = 242614.9
fv = 1.340781e+154
fv = 1641373518
fv = 1.340781e+154
fv = 8.43296
fv = 19107.82
fv = 10.71701
fv = 12.29065
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 19.76578
fv = 41.2351
fv = 1.340781e+154
fv = 9.033176
fv = 2287.958
fv = 1.340781e+154
fv = 53.81077
fv = 1.340781e+154
fv = 48.39415
fv = 214.379
fv = 8.43296
fv = 43.8003
fv = 2287.958
fv = 9.7775
fv = 11.05999
fv = 14.23865
fv = 1.340781e+154
fv = 1.340781e+154
fv = 21.10738
fv = 9.031021
fv = 9.091616
fv = 1.340781e+154
fv = 424864785
fv = 17.35758
fv = 10.97207
fv = 15.43026
fv = 1.340781e+154
fv = 8.951417
fv = 10.41036
fv = 8.43296
fv = 9.507188
fv = 9.918703
fv = 8.336453
fv = 11.24343
fv = 1.340781e+154
fv = 7.119777
fv = 8.161359
fv = 1.340781e+154
fv = 1.340781e+154
fv = 14.67081
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 7.306502
fv = 7.119777
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 7.119777
fv = 7.434908
fv = 7.953284
fv = 7.119777
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 1.340781e+154
fv = 11555693119
fv = 1.340781e+154
fv = 1.340781e+154
fv = 11.32338
fv = 12.96728
fv = 1.340781e+154
fv = 15.52919
fv = 1.340781e+154
fv = 1.340781e+154
fv = 12.75858
fv = 1.340781e+154
fv = 12.75858
fv = 31.88959
fv = 9.205251
fv = 7.119777
fv = 9.766651
fv = 25370460
fv = 7.962345
fv = 9.500544
fv = 1.340781e+154
fv = 7.16361
fv = 9.980841
fv = 7.962345
fv = 1.340781e+154
fv = 1.340781e+154
fv = 7.962345
fv = 10.30374
fv = 10.52913
fv = 10.7042
fv = 10.59376
fv = 1.340781e+154
fv = 10.30374
fv = 7.119777
fv = 1.340781e+154
fv = 7.119777
fv = 1.340781e+154
fv = 316098188517
fv = 22.52958
fv = 10.72505
fv = 8.450398
fv = 9.853163
fv = 10.07615
fv = 10.72505
fv = 16.55034
fv = 15.97276
fv = 32.21654
fv = 1.340781e+154
fv = 7.962345
fv = 7.119777
fv = 12.62007
fv = 706.4364
fv = 7.119777
fv = 9.147826
fv = 7.119777
fv = 7.119777
fv = 1.340781e+154
fv = 7.801819
fv = 7.434908
fv = 1.340781e+154
fv = 10.20868
fv = 7.119777
fv = 13.11302
fv = 7.119777
fv = 11.76357
fv = 8.585562
fv = 33.4136
fv = 1.340781e+154
fv = 10.34729
fv = 1.340781e+154
fv = 1.340781e+154
fv = 7.992773
fv = 7.277584
fv = 9.286456
fv = 11.99467
fv = 7.119777
fv = 8.006725
fv = 7.119777
fv = 7.119777
fv = 9.525629
fv = 7.119777
fv = 7.119777
fv = 612423531735
fv = 1.340781e+154
fv = 7.119777
fv = 7.516957
fv = 7.119777
fv = 1.340781e+154
fv = 8.545402
fv = 8.585562
fv = 7.119777
fv = 7.119777
run # 4: f=7.119777141
#>
#> bb eval : 893
#> best : 1.539097571e-21
#> worst : 7.119777141
#> solution: x = ( 0 0 2 8 2 0 2 0 1 0 1 2 1 1 1 5 5 1 1 1 ) f(x) = 1.539097571e-21
#>
#>
fv = 1.539098e-21
#> Warning: optimal degree equals search maximum (1): rerun with larger degree.max optimal degree equals search maximum (3): rerun with larger degree.max optimal degree equals search maximum (2): rerun with larger degree.max optimal degree equals search maximum (10): rerun with larger degree.max optimal degree equals search maximum (10): rerun with larger degree.max optimal degree equals search maximum (2): rerun with larger degree.max optimal degree equals search maximum (10): rerun with larger degree.max optimal degree equals search maximum (10): rerun with larger degree.max optimal degree equals search maximum (1): rerun with larger degree.max optimal degree equals search maximum (10): rerun with larger degree.max
#> Working...
print(learner$model)
#> Call:
#> crs.formula(formula = formula, data = data, weights = private$.get_weights(task))
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
#> Working...
#> Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
#> Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
#> Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
#>
# Score the predictions
predictions$score()
#> regr.mse
#> 11992.45