Skip to contents

Linear Regression, where the features used in the model are selected by running Exhaustive Search.

Calls ExhaustiveSearch::ExhaustiveSearch() from ExhaustiveSearch.

Initial parameter values

  • family:

    • Actual default: NULL

    • Adjusted default: "gaussian"

    • Reason for change: To comply with mlr3 architecture, we differentiate between classification and regression learners.

  • nThreads:

    • Actual default: NULL

    • Adjusted default: 1

    • Reason for change: Suppressing the automatic internal parallelization if cv.folds > 0.

  • quietly:

    • Actual default: FALSE

    • Adjusted default: TRUE

    • Reason for change: Suppression of constant printing to console

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.exhaustive_search")

Meta Information

Parameters

IdTypeDefaultLevelsRange
familycharacter-gaussian, binomial-
performanceMeasurecharacter-MSE, AIC-
combsUpTointeger-\([1, \infty)\)
nResultsinteger5000\([1, \infty)\)
nThreadsinteger-\([1, \infty)\)
testSetIDsinteger-\([1, \infty)\)
errorValuntyped-1-
quietlylogical-TRUE, FALSE-
checkLargelogicalTRUETRUE, FALSE-

See also

Author

ngerman

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrExhaustiveSearch

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method selected_features()

Extracts selected features of this learner.

Usage

LearnerRegrExhaustiveSearch$selected_features()


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerRegrExhaustiveSearch$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# define learner
learner = LearnerRegrExhaustiveSearch$new()
learner$predict_type = "se"

# define task
tsk_cars = tsk("mtcars")

# train learner
learner$train(tsk_cars)

# extract selected features
learner$selected_features()
#> [1] "am"   "qsec" "wt"  

# predict on training task
learner$predict(tsk_cars)
#> 
#> ── <PredictionRegr> for 32 observations: ───────────────────────────────────────
#>  row_ids truth response        se
#>        1  21.0 22.47046 0.7196757
#>        2  21.0 22.15825 0.7435033
#>        3  22.8 26.28107 0.7597707
#>      ---   ---      ---       ---
#>       30  19.7 20.70613 0.8295549
#>       31  15.0 16.46963 1.0745511
#>       32  21.4 24.46722 0.8668433