Regression Fuzzy Rule-based System Learner
Source:R/learner_frbs_regr_frbs.R
mlr_learners_regr.frbs.RdFuzzy rule-based regression learner supporting multiple inference engines such as WM, HYFIS,
ANFIS, DENFIS, SBC, and several genetic fuzzy systems.
Calls frbs::frbs.learn() from frbs.
Meta Information
Task type: “regr”
Predict Types: “response”
Feature Types: “integer”, “numeric”
Required Packages: mlr3, mlr3extralearners, frbs
Parameters
| Id | Type | Default | Levels | Range |
| alpha.heuristic | numeric | 1 | \([2.22044604925031e-16, \infty)\) | |
| d | numeric | 2 | \((-\infty, \infty)\) | |
| Dthr | numeric | 0.1 | \([0, 1]\) | |
| eps.high | numeric | 0.5 | \([2.22044604925031e-16, \infty)\) | |
| eps.low | numeric | 0.15 | \([2.22044604925031e-16, \infty)\) | |
| epsilon | numeric | 0.9 | \([0, 1]\) | |
| max.gen | integer | 10 | \([1, \infty)\) | |
| max.iter | integer | 10 | \([1, \infty)\) | |
| max.tune | integer | 10 | \([1, \infty)\) | |
| method.type | character | WM | WM, SBC, HYFIS, ANFIS, DENFIS, FS.HGD, FIR.DM, GFS.FR.MOGUL, GFS.THRIFT, GFS.LT.RS | - |
| mode.tuning | character | GLOBAL | GLOBAL, LOCAL | - |
| num.labels | integer | 7 | \([1, \infty)\) | |
| persen_cross | numeric | 1 | \([0, 1]\) | |
| persen_mutant | numeric | 1 | \([0, 1]\) | |
| popu.size | integer | 10 | \([1, \infty)\) | |
| r.a | numeric | 0.5 | \([2.22044604925031e-16, \infty)\) | |
| range.data | untyped | NULL | - | |
| rule.selection | logical | FALSE | TRUE, FALSE | - |
| step.size | numeric | 0.01 | \([0, 1]\) | |
| type.defuz | character | WAM | WAM, FIRST.MAX, LAST.MAX, MEAN.MAX, COG | - |
| type.implication.func | character | ZADEH | DIENES_RESHER, LUKASIEWICZ, ZADEH, GOGUEN, GODEL, SHARP, MIZUMOTO, DUBOIS_PRADE, MIN | - |
| type.mf | character | GAUSSIAN | TRIANGLE, TRAPEZOID, GAUSSIAN, SIGMOID, BELL | - |
| type.snorm | character | MAX | MAX, HAMACHER, YAGER, PRODUCT, BOUNDED | - |
| type.tnorm | character | MIN | MIN, HAMACHER, YAGER, PRODUCT, BOUNDED | - |
References
Riza LS, Bergmeir C, Herrera F, Benitez JM (2015). “frbs: Fuzzy Rule-Based Systems for Classification and Regression in R.” Journal of Statistical Software, 65(6), 1–30. http://www.jstatsoft.org/v65/i06/.
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrFrbs
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerRegr$predict_newdata_fast()
Examples
# Define the Learner
learner = lrn("regr.frbs")
print(learner)
#>
#> ── <LearnerRegrFrbs> (regr.frbs): Fuzzy Rule-based System ──────────────────────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3extralearners, and frbs
#> • Predict Types: [response]
#> • Feature Types: integer and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties:
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("mtcars")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> $num.labels
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
#> [1,] 7 7 7 7 7 7 7 7 7 7 7
#>
#> $varout.mf
#> vv.small v.small small medium large v.large
#> [1,] 5.00000000 5.00000000 5.00000000 5.00000000 5.00000000 5.00000000
#> [2,] 0.00000000 0.16666667 0.33333333 0.50000000 0.66666667 0.83333333
#> [3,] 0.05833333 0.05833333 0.05833333 0.05833333 0.05833333 0.05833333
#> [4,] NA NA NA NA NA NA
#> [5,] NA NA NA NA NA NA
#> vv.large
#> [1,] 5.00000000
#> [2,] 1.00000000
#> [3,] 0.05833333
#> [4,] NA
#> [5,] NA
#>
#> $rule
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
#> [1,] "IF" "am" "is" "vv.large" "and" "carb" "is" "vv.small" "and" "cyl" "is"
#> [2,] "IF" "am" "is" "vv.small" "and" "carb" "is" "vv.small" "and" "cyl" "is"
#> [3,] "IF" "am" "is" "vv.small" "and" "carb" "is" "v.small" "and" "cyl" "is"
#> [4,] "IF" "am" "is" "vv.small" "and" "carb" "is" "vv.small" "and" "cyl" "is"
#> [5,] "IF" "am" "is" "vv.small" "and" "carb" "is" "small" "and" "cyl" "is"
#> [6,] "IF" "am" "is" "vv.small" "and" "carb" "is" "small" "and" "cyl" "is"
#> [7,] "IF" "am" "is" "vv.small" "and" "carb" "is" "v.small" "and" "cyl" "is"
#> [8,] "IF" "am" "is" "vv.large" "and" "carb" "is" "vv.small" "and" "cyl" "is"
#> [9,] "IF" "am" "is" "vv.large" "and" "carb" "is" "medium" "and" "cyl" "is"
#> [10,] "IF" "am" "is" "vv.large" "and" "carb" "is" "vv.small" "and" "cyl" "is"
#> [11,] "IF" "am" "is" "vv.large" "and" "carb" "is" "medium" "and" "cyl" "is"
#> [12,] "IF" "am" "is" "vv.large" "and" "carb" "is" "medium" "and" "cyl" "is"
#> [13,] "IF" "am" "is" "vv.small" "and" "carb" "is" "medium" "and" "cyl" "is"
#> [14,] "IF" "am" "is" "vv.small" "and" "carb" "is" "medium" "and" "cyl" "is"
#> [15,] "IF" "am" "is" "vv.small" "and" "carb" "is" "v.small" "and" "cyl" "is"
#> [16,] "IF" "am" "is" "vv.large" "and" "carb" "is" "v.small" "and" "cyl" "is"
#> [17,] "IF" "am" "is" "vv.large" "and" "carb" "is" "vv.large" "and" "cyl" "is"
#> [18,] "IF" "am" "is" "vv.large" "and" "carb" "is" "vv.small" "and" "cyl" "is"
#> [19,] "IF" "am" "is" "vv.small" "and" "carb" "is" "v.small" "and" "cyl" "is"
#> [20,] "IF" "am" "is" "vv.small" "and" "carb" "is" "medium" "and" "cyl" "is"
#> [21,] "IF" "am" "is" "vv.small" "and" "carb" "is" "medium" "and" "cyl" "is"
#> [,12] [,13] [,14] [,15] [,16] [,17] [,18] [,19] [,20]
#> [1,] "vv.small" "and" "disp" "is" "vv.small" "and" "drat" "is" "vv.large"
#> [2,] "vv.small" "and" "disp" "is" "v.small" "and" "drat" "is" "large"
#> [3,] "vv.small" "and" "disp" "is" "v.small" "and" "drat" "is" "v.large"
#> [4,] "medium" "and" "disp" "is" "small" "and" "drat" "is" "vv.small"
#> [5,] "vv.large" "and" "disp" "is" "medium" "and" "drat" "is" "v.small"
#> [6,] "vv.large" "and" "disp" "is" "medium" "and" "drat" "is" "v.small"
#> [7,] "vv.small" "and" "disp" "is" "v.small" "and" "drat" "is" "large"
#> [8,] "vv.small" "and" "disp" "is" "vv.small" "and" "drat" "is" "v.large"
#> [9,] "vv.large" "and" "disp" "is" "large" "and" "drat" "is" "vv.large"
#> [10,] "vv.small" "and" "disp" "is" "vv.small" "and" "drat" "is" "v.large"
#> [11,] "medium" "and" "disp" "is" "v.small" "and" "drat" "is" "v.large"
#> [12,] "medium" "and" "disp" "is" "v.small" "and" "drat" "is" "v.large"
#> [13,] "vv.large" "and" "disp" "is" "large" "and" "drat" "is" "large"
#> [14,] "medium" "and" "disp" "is" "v.small" "and" "drat" "is" "v.large"
#> [15,] "vv.large" "and" "disp" "is" "v.large" "and" "drat" "is" "v.small"
#> [16,] "vv.small" "and" "disp" "is" "v.small" "and" "drat" "is" "vv.large"
#> [17,] "vv.large" "and" "disp" "is" "medium" "and" "drat" "is" "medium"
#> [18,] "vv.small" "and" "disp" "is" "v.small" "and" "drat" "is" "large"
#> [19,] "vv.large" "and" "disp" "is" "large" "and" "drat" "is" "small"
#> [20,] "vv.large" "and" "disp" "is" "vv.large" "and" "drat" "is" "small"
#> [21,] "vv.large" "and" "disp" "is" "vv.large" "and" "drat" "is" "v.small"
#> [,21] [,22] [,23] [,24] [,25] [,26] [,27] [,28] [,29] [,30]
#> [1,] "and" "gear" "is" "medium" "and" "hp" "is" "vv.small" "and" "qsec"
#> [2,] "and" "gear" "is" "vv.small" "and" "hp" "is" "v.small" "and" "qsec"
#> [3,] "and" "gear" "is" "medium" "and" "hp" "is" "v.small" "and" "qsec"
#> [4,] "and" "gear" "is" "vv.small" "and" "hp" "is" "v.small" "and" "qsec"
#> [5,] "and" "gear" "is" "vv.small" "and" "hp" "is" "medium" "and" "qsec"
#> [6,] "and" "gear" "is" "vv.small" "and" "hp" "is" "medium" "and" "qsec"
#> [7,] "and" "gear" "is" "medium" "and" "hp" "is" "vv.small" "and" "qsec"
#> [8,] "and" "gear" "is" "medium" "and" "hp" "is" "vv.small" "and" "qsec"
#> [9,] "and" "gear" "is" "vv.large" "and" "hp" "is" "large" "and" "qsec"
#> [10,] "and" "gear" "is" "medium" "and" "hp" "is" "vv.small" "and" "qsec"
#> [11,] "and" "gear" "is" "medium" "and" "hp" "is" "v.small" "and" "qsec"
#> [12,] "and" "gear" "is" "medium" "and" "hp" "is" "v.small" "and" "qsec"
#> [13,] "and" "gear" "is" "vv.small" "and" "hp" "is" "large" "and" "qsec"
#> [14,] "and" "gear" "is" "medium" "and" "hp" "is" "v.small" "and" "qsec"
#> [15,] "and" "gear" "is" "vv.small" "and" "hp" "is" "small" "and" "qsec"
#> [16,] "and" "gear" "is" "medium" "and" "hp" "is" "v.small" "and" "qsec"
#> [17,] "and" "gear" "is" "vv.large" "and" "hp" "is" "vv.large" "and" "qsec"
#> [18,] "and" "gear" "is" "medium" "and" "hp" "is" "v.small" "and" "qsec"
#> [19,] "and" "gear" "is" "vv.small" "and" "hp" "is" "small" "and" "qsec"
#> [20,] "and" "gear" "is" "vv.small" "and" "hp" "is" "large" "and" "qsec"
#> [21,] "and" "gear" "is" "vv.small" "and" "hp" "is" "medium" "and" "qsec"
#> [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38] [,39]
#> [1,] "is" "large" "and" "vs" "is" "vv.large" "and" "wt" "is"
#> [2,] "is" "large" "and" "vs" "is" "vv.large" "and" "wt" "is"
#> [3,] "is" "vv.large" "and" "vs" "is" "vv.large" "and" "wt" "is"
#> [4,] "is" "large" "and" "vs" "is" "vv.large" "and" "wt" "is"
#> [5,] "is" "small" "and" "vs" "is" "vv.small" "and" "wt" "is"
#> [6,] "is" "small" "and" "vs" "is" "vv.small" "and" "wt" "is"
#> [7,] "is" "large" "and" "vs" "is" "vv.large" "and" "wt" "is"
#> [8,] "is" "large" "and" "vs" "is" "vv.large" "and" "wt" "is"
#> [9,] "is" "vv.small" "and" "vs" "is" "vv.small" "and" "wt" "is"
#> [10,] "is" "medium" "and" "vs" "is" "vv.large" "and" "wt" "is"
#> [11,] "is" "v.small" "and" "vs" "is" "vv.small" "and" "wt" "is"
#> [12,] "is" "small" "and" "vs" "is" "vv.small" "and" "wt" "is"
#> [13,] "is" "v.small" "and" "vs" "is" "vv.small" "and" "wt" "is"
#> [14,] "is" "medium" "and" "vs" "is" "vv.large" "and" "wt" "is"
#> [15,] "is" "small" "and" "vs" "is" "vv.small" "and" "wt" "is"
#> [16,] "is" "medium" "and" "vs" "is" "vv.large" "and" "wt" "is"
#> [17,] "is" "vv.small" "and" "vs" "is" "vv.small" "and" "wt" "is"
#> [18,] "is" "medium" "and" "vs" "is" "vv.large" "and" "wt" "is"
#> [19,] "is" "small" "and" "vs" "is" "vv.small" "and" "wt" "is"
#> [20,] "is" "small" "and" "vs" "is" "vv.small" "and" "wt" "is"
#> [21,] "is" "small" "and" "vs" "is" "vv.small" "and" "wt" "is"
#> [,40] [,41] [,42] [,43] [,44]
#> [1,] "vv.small" "THEN" "mpg" "is" "vv.large"
#> [2,] "v.small" "THEN" "mpg" "is" "medium"
#> [3,] "small" "THEN" "mpg" "is" "medium"
#> [4,] "medium" "THEN" "mpg" "is" "small"
#> [5,] "large" "THEN" "mpg" "is" "small"
#> [6,] "medium" "THEN" "mpg" "is" "small"
#> [7,] "small" "THEN" "mpg" "is" "large"
#> [8,] "v.small" "THEN" "mpg" "is" "vv.large"
#> [9,] "small" "THEN" "mpg" "is" "v.small"
#> [10,] "vv.small" "THEN" "mpg" "is" "large"
#> [11,] "v.small" "THEN" "mpg" "is" "medium"
#> [12,] "small" "THEN" "mpg" "is" "medium"
#> [13,] "medium" "THEN" "mpg" "is" "v.small"
#> [14,] "medium" "THEN" "mpg" "is" "small"
#> [15,] "medium" "THEN" "mpg" "is" "small"
#> [16,] "small" "THEN" "mpg" "is" "medium"
#> [17,] "medium" "THEN" "mpg" "is" "v.small"
#> [18,] "v.small" "THEN" "mpg" "is" "medium"
#> [19,] "medium" "THEN" "mpg" "is" "small"
#> [20,] "vv.large" "THEN" "mpg" "is" "v.small"
#> [21,] "vv.large" "THEN" "mpg" "is" "vv.small"
#>
#> $varinp.mf
#> vv.small v.small small medium large v.large
#> [1,] 5.00000000 5.00000000 5.00000000 5.00000000 5.00000000 5.00000000
#> [2,] 0.00000000 0.16666667 0.33333333 0.50000000 0.66666667 0.83333333
#> [3,] 0.05833333 0.05833333 0.05833333 0.05833333 0.05833333 0.05833333
#> [4,] NA NA NA NA NA NA
#> [5,] NA NA NA NA NA NA
#> vv.large vv.small v.small small medium large
#> [1,] 5.00000000 5.00000000 5.00000000 5.00000000 5.00000000 5.00000000
#> [2,] 1.00000000 0.00000000 0.16666667 0.33333333 0.50000000 0.66666667
#> [3,] 0.05833333 0.05833333 0.05833333 0.05833333 0.05833333 0.05833333
#> [4,] NA NA NA NA NA NA
#> [5,] NA NA NA NA NA NA
#> v.large vv.large vv.small v.small small medium
#> [1,] 5.00000000 5.00000000 5.00000000 5.00000000 5.00000000 5.00000000
#> [2,] 0.83333333 1.00000000 0.00000000 0.16666667 0.33333333 0.50000000
#> [3,] 0.05833333 0.05833333 0.05833333 0.05833333 0.05833333 0.05833333
#> [4,] NA NA NA NA NA NA
#> [5,] NA NA NA NA NA NA
#> large v.large vv.large vv.small v.small small
#> [1,] 5.00000000 5.00000000 5.00000000 5.00000000 5.00000000 5.00000000
#> [2,] 0.66666667 0.83333333 1.00000000 0.00000000 0.16666667 0.33333333
#> [3,] 0.05833333 0.05833333 0.05833333 0.05833333 0.05833333 0.05833333
#> [4,] NA NA NA NA NA NA
#> [5,] NA NA NA NA NA NA
#> medium large v.large vv.large vv.small v.small
#> [1,] 5.00000000 5.00000000 5.00000000 5.00000000 5.00000000 5.00000000
#> [2,] 0.50000000 0.66666667 0.83333333 1.00000000 0.00000000 0.16666667
#> [3,] 0.05833333 0.05833333 0.05833333 0.05833333 0.05833333 0.05833333
#> [4,] NA NA NA NA NA NA
#> [5,] NA NA NA NA NA NA
#> small medium large v.large vv.large vv.small
#> [1,] 5.00000000 5.00000000 5.00000000 5.00000000 5.00000000 5.00000000
#> [2,] 0.33333333 0.50000000 0.66666667 0.83333333 1.00000000 0.00000000
#> [3,] 0.05833333 0.05833333 0.05833333 0.05833333 0.05833333 0.05833333
#> [4,] NA NA NA NA NA NA
#> [5,] NA NA NA NA NA NA
#> v.small small medium large v.large vv.large
#> [1,] 5.00000000 5.00000000 5.00000000 5.00000000 5.00000000 5.00000000
#> [2,] 0.16666667 0.33333333 0.50000000 0.66666667 0.83333333 1.00000000
#> [3,] 0.05833333 0.05833333 0.05833333 0.05833333 0.05833333 0.05833333
#> [4,] NA NA NA NA NA NA
#> [5,] NA NA NA NA NA NA
#> vv.small v.small small medium large v.large
#> [1,] 5.00000000 5.00000000 5.00000000 5.00000000 5.00000000 5.00000000
#> [2,] 0.00000000 0.16666667 0.33333333 0.50000000 0.66666667 0.83333333
#> [3,] 0.05833333 0.05833333 0.05833333 0.05833333 0.05833333 0.05833333
#> [4,] NA NA NA NA NA NA
#> [5,] NA NA NA NA NA NA
#> vv.large vv.small v.small small medium large
#> [1,] 5.00000000 5.00000000 5.00000000 5.00000000 5.00000000 5.00000000
#> [2,] 1.00000000 0.00000000 0.16666667 0.33333333 0.50000000 0.66666667
#> [3,] 0.05833333 0.05833333 0.05833333 0.05833333 0.05833333 0.05833333
#> [4,] NA NA NA NA NA NA
#> [5,] NA NA NA NA NA NA
#> v.large vv.large vv.small v.small small medium
#> [1,] 5.00000000 5.00000000 5.00000000 5.00000000 5.00000000 5.00000000
#> [2,] 0.83333333 1.00000000 0.00000000 0.16666667 0.33333333 0.50000000
#> [3,] 0.05833333 0.05833333 0.05833333 0.05833333 0.05833333 0.05833333
#> [4,] NA NA NA NA NA NA
#> [5,] NA NA NA NA NA NA
#> large v.large vv.large vv.small v.small small
#> [1,] 5.00000000 5.00000000 5.00000000 5.00000000 5.00000000 5.00000000
#> [2,] 0.66666667 0.83333333 1.00000000 0.00000000 0.16666667 0.33333333
#> [3,] 0.05833333 0.05833333 0.05833333 0.05833333 0.05833333 0.05833333
#> [4,] NA NA NA NA NA NA
#> [5,] NA NA NA NA NA NA
#> medium large v.large vv.large
#> [1,] 5.00000000 5.00000000 5.00000000 5.00000000
#> [2,] 0.50000000 0.66666667 0.83333333 1.00000000
#> [3,] 0.05833333 0.05833333 0.05833333 0.05833333
#> [4,] NA NA NA NA
#> [5,] NA NA NA NA
#>
#> $degree.ante
#>
#> [1,] 0.9200763
#> [2,] 0.7481040
#> [3,] 0.7348734
#> [4,] 0.6869344
#> [5,] 0.5092745
#> [6,] 0.5092745
#> [7,] 0.6648505
#> [8,] 0.4375647
#> [9,] 0.4544688
#> [10,] 0.4789988
#> [11,] 0.4725141
#> [12,] 0.4725141
#> [13,] 0.4725141
#> [14,] 0.4468445
#> [15,] 0.3851057
#> [16,] 0.4342669
#> [17,] 0.4525169
#> [18,] 0.3913072
#> [19,] 0.3851057
#> [20,] 0.3921187
#> [21,] 0.3817718
#>
#> $rule.data.num
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
#> [1,] 7 8 15 22 35 39 43 54 63 64 77
#> [2,] 1 8 15 23 33 36 44 54 63 65 74
#> [3,] 1 9 15 23 34 39 44 56 63 66 74
#> [4,] 1 8 18 24 29 36 44 54 63 67 73
#> [5,] 1 10 21 25 30 36 46 52 57 68 73
#> [6,] 1 10 21 25 30 36 46 52 57 67 73
#> [7,] 1 9 15 23 33 39 43 54 63 66 75
#> [8,] 7 8 15 22 34 39 43 54 63 65 77
#> [9,] 7 11 21 26 35 42 47 50 57 66 72
#> [10,] 7 8 15 22 34 39 43 53 63 64 75
#> [11,] 7 11 18 23 34 39 44 51 57 65 74
#> [12,] 7 11 18 23 34 39 44 52 57 66 74
#> [13,] 1 11 21 26 33 36 47 51 57 67 72
#> [14,] 1 11 18 23 34 39 44 53 63 67 73
#> [15,] 1 9 21 27 30 36 45 52 57 67 73
#> [16,] 7 9 15 23 35 39 44 53 63 66 74
#> [17,] 7 14 21 25 32 42 49 50 57 67 72
#> [18,] 7 8 15 23 33 39 44 53 63 65 74
#> [19,] 1 9 21 26 31 36 45 52 57 67 73
#> [20,] 1 11 21 28 31 36 47 52 57 70 72
#> [21,] 1 11 21 28 30 36 46 52 57 70 71
#>
#> $degree.rule
#>
#> [1,] 0.92007635
#> [2,] 0.74810403
#> [3,] 0.73487339
#> [4,] 0.68693443
#> [5,] 0.59110655
#> [6,] 0.50927448
#> [7,] 0.47754758
#> [8,] 0.45045471
#> [9,] 0.44313607
#> [10,] 0.33284074
#> [11,] 0.29663650
#> [12,] 0.29663650
#> [13,] 0.24043998
#> [14,] 0.22013182
#> [15,] 0.22013182
#> [16,] 0.13900452
#> [17,] 0.11683327
#> [18,] 0.10632742
#> [19,] 0.05629793
#> [20,] 0.03834348
#> [21,] 0.00000000
#>
#> $range.data.ori
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
#> [1,] 0 1 4 71.1 2.76 3 62 14.5 0 1.835 10.4
#> [2,] 1 8 8 472.0 4.22 5 335 22.9 1 5.345 33.9
#>
#> $type.mf
#> [1] "GAUSSIAN"
#>
#> $type.tnorm
#> [1] "MIN"
#>
#> $type.implication.func
#> [1] "ZADEH"
#>
#> $type.model
#> [1] "MAMDANI"
#>
#> $type.defuz
#> [1] "WAM"
#>
#> $type.snorm
#> [1] "MAX"
#>
#> $method.type
#> [1] "WM"
#>
#> $name
#> [1] "sim-0"
#>
#> $colnames.var
#> [1] "am" "carb" "cyl" "disp" "drat" "gear" "hp" "qsec" "vs" "wt"
#> [11] "mpg"
#>
#> attr(,"class")
#> [1] "frbs"
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
#> [1] "note: Some of your new data are out of the previously specified range"
#> [1] "note: Some of your new data are out of the previously specified range"
#> [1] "note: Some of your new data are out of the previously specified range"
# Score the predictions
predictions$score()
#> regr.mse
#> 7.103764