Skip to contents

Fit a generalized additive regression model using a boosting algorithm. Calls mboost::gamboost() from mboost.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.gamboost")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, mboost

Parameters

IdTypeDefaultLevelsRange
baselearnercharacterbbsbbs, bols, btree-
dfbaseinteger4\((-\infty, \infty)\)
familycharacterGaussianGaussian, Laplace, Huber, Poisson, GammaReg, NBinomial, Hurdle, custom-
custom.familyuntyped--
nuirangeuntypedc(0, 100)-
dnumericNULL\((-\infty, \infty)\)
mstopinteger100\((-\infty, \infty)\)
nunumeric0.1\((-\infty, \infty)\)
riskcharacterinbaginbag, oobag, none-
oobweightsuntypedNULL-
tracelogicalFALSETRUE, FALSE-
stopinternuntypedFALSE-
na.actionuntypedstats::na.omit-

Offset

If a Task contains a column with the offset role, it is automatically incorporated via the offset argument in mboost's training function. No offset is applied during prediction for this learner.

References

Bühlmann, Peter, Yu, Bin (2003). “Boosting with the L 2 loss: regression and classification.” Journal of the American Statistical Association, 98(462), 324–339.

See also

Author

be-marc

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrGAMBoost

Methods

Inherited methods


Method new()

Create a LearnerRegrGAMBoost object.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerRegrGAMBoost$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = lrn("regr.gamboost", baselearner = "bols")
print(learner)
#> <LearnerRegrGAMBoost:regr.gamboost>: Boosted Generalized Additive Model
#> * Model: -
#> * Parameters: baselearner=bols
#> * Packages: mlr3, mlr3extralearners, mboost
#> * Predict Types:  [response]
#> * Feature Types: integer, numeric, factor, ordered
#> * Properties: offset, weights