Regression Mars Learner
mlr_learners_regr.mars.Rd
Multivariate Adaptive Regression Splines.
Calls mda::mars()
from mda.
Meta Information
Task type: “regr”
Predict Types: “response”
Feature Types: “integer”, “numeric”
Required Packages: mlr3, mlr3extralearners, mda
Parameters
Id | Type | Default | Levels | Range |
degree | integer | 1 | \([1, \infty)\) | |
nk | integer | - | \([1, \infty)\) | |
penalty | numeric | 2 | \([0, \infty)\) | |
thresh | numeric | 0.001 | \([0, \infty)\) | |
prune | logical | TRUE | TRUE, FALSE | - |
trace.mars | logical | FALSE | TRUE, FALSE | - |
forward.step | logical | FALSE | TRUE, FALSE | - |
References
Friedman, H J (1991). “Multivariate adaptive regression splines.” The annals of statistics, 19(1), 1–67.
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerRegr
-> LearnerRegrMars
Examples
# Define the Learner
learner = mlr3::lrn("regr.mars")
print(learner)
#> <LearnerRegrMars:regr.mars>: Multivariate Adaptive Regression Splines
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3extralearners, mda
#> * Predict Types: [response]
#> * Feature Types: integer, numeric
#> * Properties: -
# Define a Task
task = mlr3::tsk("mtcars")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> $call
#> mda::mars(x = x, y = y)
#>
#> $all.terms
#> [1] 1 2 4 6 8 10 12 14 16 18
#>
#> $selected.terms
#> [1] 1 2 6 8
#>
#> $penalty
#> [1] 2
#>
#> $degree
#> [1] 1
#>
#> $nk
#> [1] 21
#>
#> $thresh
#> [1] 0.001
#>
#> $gcv
#> [1] 12.01507
#>
#> $factor
#> am carb cyl disp drat gear hp qsec vs wt
#> [1,] 0 0 0 0 0 0 0 0 0 0
#> [2,] 0 0 0 0 0 0 0 0 0 1
#> [3,] 0 0 0 0 0 0 0 0 0 -1
#> [4,] 0 0 0 0 0 0 0 1 0 0
#> [5,] 0 0 0 0 0 0 0 -1 0 0
#> [6,] 1 0 0 0 0 0 0 0 0 0
#> [7,] -1 0 0 0 0 0 0 0 0 0
#> [8,] 0 1 0 0 0 0 0 0 0 0
#> [9,] 0 -1 0 0 0 0 0 0 0 0
#> [10,] 0 0 0 0 0 1 0 0 0 0
#> [11,] 0 0 0 0 0 -1 0 0 0 0
#> [12,] 0 0 1 0 0 0 0 0 0 0
#> [13,] 0 0 -1 0 0 0 0 0 0 0
#> [14,] 0 0 0 0 0 0 0 0 1 0
#> [15,] 0 0 0 0 0 0 0 0 -1 0
#> [16,] 0 0 0 0 1 0 0 0 0 0
#> [17,] 0 0 0 0 -1 0 0 0 0 0
#> [18,] 0 0 0 0 0 0 1 0 0 0
#> [19,] 0 0 0 0 0 0 -1 0 0 0
#>
#> $cuts
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
#> [1,] 0 0 0 0 0.00 0 0 0.0 0 0.000
#> [2,] 0 0 0 0 0.00 0 0 0.0 0 1.513
#> [3,] 0 0 0 0 0.00 0 0 0.0 0 1.513
#> [4,] 0 0 0 0 0.00 0 0 14.6 0 0.000
#> [5,] 0 0 0 0 0.00 0 0 14.6 0 0.000
#> [6,] 0 0 0 0 0.00 0 0 0.0 0 0.000
#> [7,] 0 0 0 0 0.00 0 0 0.0 0 0.000
#> [8,] 0 1 0 0 0.00 0 0 0.0 0 0.000
#> [9,] 0 1 0 0 0.00 0 0 0.0 0 0.000
#> [10,] 0 0 0 0 0.00 3 0 0.0 0 0.000
#> [11,] 0 0 0 0 0.00 3 0 0.0 0 0.000
#> [12,] 0 0 4 0 0.00 0 0 0.0 0 0.000
#> [13,] 0 0 4 0 0.00 0 0 0.0 0 0.000
#> [14,] 0 0 0 0 0.00 0 0 0.0 0 0.000
#> [15,] 0 0 0 0 0.00 0 0 0.0 0 0.000
#> [16,] 0 0 0 0 2.76 0 0 0.0 0 0.000
#> [17,] 0 0 0 0 2.76 0 0 0.0 0 0.000
#> [18,] 0 0 0 0 0.00 0 52 0.0 0 0.000
#> [19,] 0 0 0 0 0.00 0 52 0.0 0 0.000
#>
#> $residuals
#> [,1]
#> [1,] -2.4045563
#> [2,] -0.6722171
#> [3,] 2.6501320
#> [4,] 3.0167552
#> [5,] 0.3116485
#> [6,] 0.2999199
#> [7,] -1.6660024
#> [8,] -0.9296308
#> [9,] 3.6251169
#> [10,] 3.0857323
#> [11,] 1.1115089
#> [12,] 3.6069649
#> [13,] -2.0812191
#> [14,] -3.6576927
#> [15,] -1.8106230
#> [16,] 0.9138126
#> [17,] -1.8806748
#> [18,] 0.8379904
#> [19,] -0.1133508
#> [20,] 0.5208652
#> [21,] -4.7644798
#>
#> $fitted.values
#> [,1]
#> [1,] 23.40456
#> [2,] 19.37222
#> [3,] 20.14987
#> [4,] 16.18324
#> [5,] 16.08835
#> [6,] 17.00008
#> [7,] 16.86600
#> [8,] 11.32963
#> [9,] 11.07488
#> [10,] 29.31427
#> [11,] 29.28849
#> [12,] 30.29304
#> [13,] 23.58122
#> [14,] 19.15769
#> [15,] 15.11062
#> [16,] 18.28619
#> [17,] 27.88067
#> [18,] 29.56201
#> [19,] 19.81335
#> [20,] 14.47913
#> [21,] 26.16448
#>
#> $lenb
#> [1] 19
#>
#> $coefficients
#> [,1]
#> [1,] 26.134059
#> [2,] -2.681555
#> [3,] 5.022437
#> [4,] -1.594486
#>
#> $x
#> [,1] [,2] [,3] [,4]
#> [1,] 1 1.107 1 3
#> [2,] 1 1.927 0 1
#> [3,] 1 1.637 0 1
#> [4,] 1 1.927 0 3
#> [5,] 1 2.557 0 2
#> [6,] 1 2.217 0 2
#> [7,] 1 2.267 0 2
#> [8,] 1 3.737 0 3
#> [9,] 1 3.832 0 3
#> [10,] 1 0.687 1 0
#> [11,] 1 0.102 1 1
#> [12,] 1 0.322 1 0
#> [13,] 1 0.952 0 0
#> [14,] 1 2.007 0 1
#> [15,] 1 2.327 0 3
#> [16,] 1 2.332 0 1
#> [17,] 1 0.627 1 1
#> [18,] 1 0.000 1 1
#> [19,] 1 1.257 1 5
#> [20,] 1 2.057 1 7
#> [21,] 1 1.267 1 1
#>
#> attr(,"class")
#> [1] "mars"
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> regr.mse
#> 12.35801