Regression Mars Learner
mlr_learners_regr.mars.Rd
Multivariate Adaptive Regression Splines.
Calls mda::mars()
from mda.
Meta Information
Task type: “regr”
Predict Types: “response”
Feature Types: “integer”, “numeric”
Required Packages: mlr3, mlr3extralearners, mda
Parameters
Id | Type | Default | Levels | Range |
degree | integer | 1 | \([1, \infty)\) | |
nk | integer | - | \([1, \infty)\) | |
penalty | numeric | 2 | \([0, \infty)\) | |
thresh | numeric | 0.001 | \([0, \infty)\) | |
prune | logical | TRUE | TRUE, FALSE | - |
trace.mars | logical | FALSE | TRUE, FALSE | - |
forward.step | logical | FALSE | TRUE, FALSE | - |
References
Friedman, H J (1991). “Multivariate adaptive regression splines.” The annals of statistics, 19(1), 1–67.
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerRegr
-> LearnerRegrMars
Examples
# Define the Learner
learner = mlr3::lrn("regr.mars")
print(learner)
#> <LearnerRegrMars:regr.mars>: Multivariate Adaptive Regression Splines
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3extralearners, mda
#> * Predict Types: [response]
#> * Feature Types: integer, numeric
#> * Properties: -
# Define a Task
task = mlr3::tsk("mtcars")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> $call
#> mda::mars(x = x, y = y)
#>
#> $all.terms
#> [1] 1 2 4 6 8 10 12 14 16 18
#>
#> $selected.terms
#> [1] 1 2 4
#>
#> $penalty
#> [1] 2
#>
#> $degree
#> [1] 1
#>
#> $nk
#> [1] 21
#>
#> $thresh
#> [1] 0.001
#>
#> $gcv
#> [1] 8.199423
#>
#> $factor
#> am carb cyl disp drat gear hp qsec vs wt
#> [1,] 0 0 0 0 0 0 0 0 0 0
#> [2,] 0 0 0 0 0 0 0 0 0 1
#> [3,] 0 0 0 0 0 0 0 0 0 -1
#> [4,] 0 0 1 0 0 0 0 0 0 0
#> [5,] 0 0 -1 0 0 0 0 0 0 0
#> [6,] 0 1 0 0 0 0 0 0 0 0
#> [7,] 0 -1 0 0 0 0 0 0 0 0
#> [8,] 1 0 0 0 0 0 0 0 0 0
#> [9,] -1 0 0 0 0 0 0 0 0 0
#> [10,] 0 0 0 0 0 0 0 1 0 0
#> [11,] 0 0 0 0 0 0 0 -1 0 0
#> [12,] 0 0 0 1 0 0 0 0 0 0
#> [13,] 0 0 0 -1 0 0 0 0 0 0
#> [14,] 0 0 0 0 0 0 1 0 0 0
#> [15,] 0 0 0 0 0 0 -1 0 0 0
#> [16,] 0 0 0 0 0 0 0 0 1 0
#> [17,] 0 0 0 0 0 0 0 0 -1 0
#> [18,] 0 0 0 0 0 1 0 0 0 0
#> [19,] 0 0 0 0 0 -1 0 0 0 0
#>
#> $cuts
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
#> [1,] 0 0 0 0.0 0 0 0 0.0 0 0.000
#> [2,] 0 0 0 0.0 0 0 0 0.0 0 1.513
#> [3,] 0 0 0 0.0 0 0 0 0.0 0 1.513
#> [4,] 0 0 4 0.0 0 0 0 0.0 0 0.000
#> [5,] 0 0 4 0.0 0 0 0 0.0 0 0.000
#> [6,] 0 1 0 0.0 0 0 0 0.0 0 0.000
#> [7,] 0 1 0 0.0 0 0 0 0.0 0 0.000
#> [8,] 0 0 0 0.0 0 0 0 0.0 0 0.000
#> [9,] 0 0 0 0.0 0 0 0 0.0 0 0.000
#> [10,] 0 0 0 0.0 0 0 0 14.5 0 0.000
#> [11,] 0 0 0 0.0 0 0 0 14.5 0 0.000
#> [12,] 0 0 0 71.1 0 0 0 0.0 0 0.000
#> [13,] 0 0 0 71.1 0 0 0 0.0 0 0.000
#> [14,] 0 0 0 0.0 0 0 52 0.0 0 0.000
#> [15,] 0 0 0 0.0 0 0 52 0.0 0 0.000
#> [16,] 0 0 0 0.0 0 0 0 0.0 0 0.000
#> [17,] 0 0 0 0.0 0 0 0 0.0 0 0.000
#> [18,] 0 0 0 0.0 0 3 0 0.0 0 0.000
#> [19,] 0 0 0 0.0 0 3 0 0.0 0 0.000
#>
#> $residuals
#> [,1]
#> [1,] -1.6611102
#> [2,] -0.6660615
#> [3,] 1.0606700
#> [4,] 1.8814712
#> [5,] -1.2833028
#> [6,] 1.3202992
#> [7,] -0.4357869
#> [8,] -1.6613459
#> [9,] 1.6130952
#> [10,] 1.3233401
#> [11,] 1.1744103
#> [12,] 5.5328837
#> [13,] -4.4087608
#> [14,] -1.0063566
#> [15,] -1.6380395
#> [16,] -1.9576681
#> [17,] 3.9618426
#> [18,] -0.6769011
#> [19,] -1.1769601
#> [20,] 0.7763909
#> [21,] -2.0721097
#>
#> $fitted.values
#> [,1]
#> [1,] 22.66111
#> [2,] 21.66606
#> [3,] 20.33933
#> [4,] 16.81853
#> [5,] 19.38330
#> [6,] 23.07970
#> [7,] 23.23579
#> [8,] 19.46135
#> [9,] 15.68690
#> [10,] 9.07666
#> [11,] 29.22559
#> [12,] 28.36712
#> [13,] 25.90876
#> [14,] 16.50636
#> [15,] 16.83804
#> [16,] 15.25767
#> [17,] 15.23816
#> [18,] 27.97690
#> [19,] 27.17696
#> [20,] 29.62361
#> [21,] 17.87211
#>
#> $lenb
#> [1] 19
#>
#> $coefficients
#> [,1]
#> [1,] 29.623609
#> [2,] -3.902152
#> [3,] -1.321409
#>
#> $x
#> [,1] [,2] [,3]
#> [1,] 1 1.107 2
#> [2,] 1 1.362 2
#> [3,] 1 1.702 2
#> [4,] 1 1.927 4
#> [5,] 1 1.947 2
#> [6,] 1 1.677 0
#> [7,] 1 1.637 0
#> [8,] 1 1.927 2
#> [9,] 1 2.217 4
#> [10,] 1 3.911 4
#> [11,] 1 0.102 0
#> [12,] 1 0.322 0
#> [13,] 1 0.952 0
#> [14,] 1 2.007 4
#> [15,] 1 1.922 4
#> [16,] 1 2.327 4
#> [17,] 1 2.332 4
#> [18,] 1 0.422 0
#> [19,] 1 0.627 0
#> [20,] 1 0.000 0
#> [21,] 1 1.657 4
#>
#> attr(,"class")
#> [1] "mars"
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> regr.mse
#> 8.947929