Regression Mars Learner
mlr_learners_regr.mars.Rd
Multivariate Adaptive Regression Splines.
Calls mda::mars()
from mda.
Meta Information
Task type: “regr”
Predict Types: “response”
Feature Types: “integer”, “numeric”
Required Packages: mlr3, mlr3extralearners, mda
Parameters
Id | Type | Default | Levels | Range |
degree | integer | 1 | \([1, \infty)\) | |
nk | integer | - | \([1, \infty)\) | |
penalty | numeric | 2 | \([0, \infty)\) | |
thresh | numeric | 0.001 | \([0, \infty)\) | |
prune | logical | TRUE | TRUE, FALSE | - |
trace.mars | logical | FALSE | TRUE, FALSE | - |
forward.step | logical | FALSE | TRUE, FALSE | - |
References
Friedman, H J (1991). “Multivariate adaptive regression splines.” The annals of statistics, 19(1), 1–67.
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerRegr
-> LearnerRegrMars
Examples
# Define the Learner
learner = mlr3::lrn("regr.mars")
print(learner)
#>
#> ── <LearnerRegrMars> (regr.mars): Multivariate Adaptive Regression Splines ─────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3extralearners, and mda
#> • Predict Types: [response]
#> • Feature Types: integer and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties:
#> • Other settings: use_weights = 'error'
# Define a Task
task = mlr3::tsk("mtcars")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> $call
#> mda::mars(x = x, y = y)
#>
#> $all.terms
#> [1] 1 2 4 6 8 10 12 14 16
#>
#> $selected.terms
#> [1] 1 2 10
#>
#> $penalty
#> [1] 2
#>
#> $degree
#> [1] 1
#>
#> $nk
#> [1] 21
#>
#> $thresh
#> [1] 0.001
#>
#> $gcv
#> [1] 10.84489
#>
#> $factor
#> am carb cyl disp drat gear hp qsec vs wt
#> [1,] 0 0 0 0 0 0 0 0 0 0
#> [2,] 0 0 0 0 0 0 0 0 0 1
#> [3,] 0 0 0 0 0 0 0 0 0 -1
#> [4,] 0 0 0 0 0 0 1 0 0 0
#> [5,] 0 0 0 0 0 0 -1 0 0 0
#> [6,] 0 0 0 0 1 0 0 0 0 0
#> [7,] 0 0 0 0 -1 0 0 0 0 0
#> [8,] 0 0 0 1 0 0 0 0 0 0
#> [9,] 0 0 0 -1 0 0 0 0 0 0
#> [10,] 0 0 0 0 0 0 0 1 0 0
#> [11,] 0 0 0 0 0 0 0 -1 0 0
#> [12,] 0 0 0 0 0 0 0 0 1 0
#> [13,] 0 0 0 0 0 0 0 0 -1 0
#> [14,] 1 0 0 0 0 0 0 0 0 0
#> [15,] -1 0 0 0 0 0 0 0 0 0
#> [16,] 0 0 0 0 0 1 0 0 0 0
#> [17,] 0 0 0 0 0 -1 0 0 0 0
#>
#> $cuts
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
#> [1,] 0 0 0 0.0 0.00 0 0 0.0 0 0.000
#> [2,] 0 0 0 0.0 0.00 0 0 0.0 0 1.615
#> [3,] 0 0 0 0.0 0.00 0 0 0.0 0 1.615
#> [4,] 0 0 0 0.0 0.00 0 52 0.0 0 0.000
#> [5,] 0 0 0 0.0 0.00 0 52 0.0 0 0.000
#> [6,] 0 0 0 0.0 2.76 0 0 0.0 0 0.000
#> [7,] 0 0 0 0.0 2.76 0 0 0.0 0 0.000
#> [8,] 0 0 0 71.1 0.00 0 0 0.0 0 0.000
#> [9,] 0 0 0 71.1 0.00 0 0 0.0 0 0.000
#> [10,] 0 0 0 0.0 0.00 0 0 14.5 0 0.000
#> [11,] 0 0 0 0.0 0.00 0 0 14.5 0 0.000
#> [12,] 0 0 0 0.0 0.00 0 0 0.0 0 0.000
#> [13,] 0 0 0 0.0 0.00 0 0 0.0 0 0.000
#> [14,] 0 0 0 0.0 0.00 0 0 0.0 0 0.000
#> [15,] 0 0 0 0.0 0.00 0 0 0.0 0 0.000
#> [16,] 0 0 0 0.0 0.00 3 0 0.0 0 0.000
#> [17,] 0 0 0 0.0 0.00 3 0 0.0 0 0.000
#>
#> $residuals
#> [,1]
#> [1,] 0.1192910
#> [2,] -2.0443308
#> [3,] -3.1311140
#> [4,] 2.1633106
#> [5,] -0.3376371
#> [6,] -2.2948553
#> [7,] 0.5212640
#> [8,] -0.2880390
#> [9,] 0.1985790
#> [10,] 4.5160534
#> [11,] 2.4800981
#> [12,] 5.6843314
#> [13,] -3.9947516
#> [14,] -2.3511147
#> [15,] -3.4313454
#> [16,] 2.6380673
#> [17,] 0.4611354
#> [18,] 2.1228881
#> [19,] -1.4184770
#> [20,] -0.2396018
#> [21,] -1.3737519
#>
#> $fitted.values
#> [,1]
#> [1,] 20.88071
#> [2,] 24.84433
#> [3,] 21.23111
#> [4,] 22.23669
#> [5,] 19.53764
#> [6,] 20.09486
#> [7,] 15.87874
#> [8,] 17.58804
#> [9,] 10.20142
#> [10,] 10.18395
#> [11,] 27.91990
#> [12,] 28.21567
#> [13,] 25.49475
#> [14,] 17.85111
#> [15,] 18.63135
#> [16,] 16.56193
#> [17,] 26.83886
#> [18,] 23.87711
#> [19,] 17.21848
#> [20,] 19.93960
#> [21,] 22.77375
#>
#> $lenb
#> [1] 17
#>
#> $coefficients
#> [,1]
#> [1,] 24.186540
#> [2,] -4.481069
#> [3,] 0.928697
#>
#> $x
#> [,1] [,2] [,3]
#> [1,] 1 1.260 2.52
#> [2,] 1 0.705 4.11
#> [3,] 1 1.845 5.72
#> [4,] 1 1.575 5.50
#> [5,] 1 1.825 3.80
#> [6,] 1 1.825 4.40
#> [7,] 1 2.455 2.90
#> [8,] 1 2.115 3.10
#> [9,] 1 3.809 3.32
#> [10,] 1 3.730 2.92
#> [11,] 1 0.000 4.02
#> [12,] 1 0.220 5.40
#> [13,] 1 0.850 5.51
#> [14,] 1 1.905 2.37
#> [15,] 1 1.820 2.80
#> [16,] 1 2.230 2.55
#> [17,] 1 0.320 4.40
#> [18,] 1 0.525 2.20
#> [19,] 1 1.555 0.00
#> [20,] 1 1.155 1.00
#> [21,] 1 1.165 4.10
#>
#> attr(,"class")
#> [1] "mars"
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> regr.mse
#> 6.932592