Regression Mars Learner
mlr_learners_regr.mars.Rd
Multivariate Adaptive Regression Splines.
Calls mda::mars()
from mda.
Meta Information
Task type: “regr”
Predict Types: “response”
Feature Types: “integer”, “numeric”
Required Packages: mlr3, mlr3extralearners, mda
Parameters
Id | Type | Default | Levels | Range |
degree | integer | 1 | \([1, \infty)\) | |
nk | integer | - | \([1, \infty)\) | |
penalty | numeric | 2 | \([0, \infty)\) | |
thresh | numeric | 0.001 | \([0, \infty)\) | |
prune | logical | TRUE | TRUE, FALSE | - |
trace.mars | logical | FALSE | TRUE, FALSE | - |
forward.step | logical | FALSE | TRUE, FALSE | - |
References
Friedman, H J (1991). “Multivariate adaptive regression splines.” The annals of statistics, 19(1), 1–67.
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerRegr
-> LearnerRegrMars
Examples
# Define the Learner
learner = mlr3::lrn("regr.mars")
print(learner)
#> <LearnerRegrMars:regr.mars>: Multivariate Adaptive Regression Splines
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3extralearners, mda
#> * Predict Types: [response]
#> * Feature Types: integer, numeric
#> * Properties: -
# Define a Task
task = mlr3::tsk("mtcars")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> $call
#> mda::mars(x = x, y = y)
#>
#> $all.terms
#> [1] 1 2 4 6 8 10 12 14 16
#>
#> $selected.terms
#> [1] 1 2 4
#>
#> $penalty
#> [1] 2
#>
#> $degree
#> [1] 1
#>
#> $nk
#> [1] 21
#>
#> $thresh
#> [1] 0.001
#>
#> $gcv
#> [1] 7.771306
#>
#> $factor
#> am carb cyl disp drat gear hp qsec vs wt
#> [1,] 0 0 0 0 0 0 0 0 0 0
#> [2,] 0 0 0 0 0 0 0 0 0 1
#> [3,] 0 0 0 0 0 0 0 0 0 -1
#> [4,] 0 0 0 0 0 0 1 0 0 0
#> [5,] 0 0 0 0 0 0 -1 0 0 0
#> [6,] 0 0 0 1 0 0 0 0 0 0
#> [7,] 0 0 0 -1 0 0 0 0 0 0
#> [8,] 0 0 0 0 0 1 0 0 0 0
#> [9,] 0 0 0 0 0 -1 0 0 0 0
#> [10,] 0 0 0 0 0 0 0 1 0 0
#> [11,] 0 0 0 0 0 0 0 -1 0 0
#> [12,] 0 0 0 0 0 0 0 0 1 0
#> [13,] 0 0 0 0 0 0 0 0 -1 0
#> [14,] 0 0 0 0 1 0 0 0 0 0
#> [15,] 0 0 0 0 -1 0 0 0 0 0
#> [16,] 0 1 0 0 0 0 0 0 0 0
#> [17,] 0 -1 0 0 0 0 0 0 0 0
#>
#> $cuts
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
#> [1,] 0 0 0 0.0 0.00 0 0 0.0 0 0.000
#> [2,] 0 0 0 0.0 0.00 0 0 0.0 0 1.513
#> [3,] 0 0 0 0.0 0.00 0 0 0.0 0 1.513
#> [4,] 0 0 0 0.0 0.00 0 52 0.0 0 0.000
#> [5,] 0 0 0 0.0 0.00 0 52 0.0 0 0.000
#> [6,] 0 0 0 71.1 0.00 0 0 0.0 0 0.000
#> [7,] 0 0 0 71.1 0.00 0 0 0.0 0 0.000
#> [8,] 0 0 0 0.0 0.00 3 0 0.0 0 0.000
#> [9,] 0 0 0 0.0 0.00 3 0 0.0 0 0.000
#> [10,] 0 0 0 0.0 0.00 0 0 14.5 0 0.000
#> [11,] 0 0 0 0.0 0.00 0 0 14.5 0 0.000
#> [12,] 0 0 0 0.0 0.00 0 0 0.0 0 0.000
#> [13,] 0 0 0 0.0 0.00 0 0 0.0 0 0.000
#> [14,] 0 0 0 0.0 2.76 0 0 0.0 0 0.000
#> [15,] 0 0 0 0.0 2.76 0 0 0.0 0 0.000
#> [16,] 0 1 0 0.0 0.00 0 0 0.0 0 0.000
#> [17,] 0 1 0 0.0 0.00 0 0 0.0 0 0.000
#>
#> $residuals
#> [,1]
#> [1,] -1.60364017
#> [2,] -2.68899552
#> [3,] -2.28615201
#> [4,] 1.36178358
#> [5,] 0.78407339
#> [6,] -0.62108883
#> [7,] -2.02108883
#> [8,] 1.20942247
#> [9,] 0.71616888
#> [10,] -1.17894088
#> [11,] 0.94346986
#> [12,] 2.01594302
#> [13,] 0.54828607
#> [14,] 5.41709479
#> [15,] -3.25103178
#> [16,] -3.02273555
#> [17,] -0.49661412
#> [18,] 2.90768884
#> [19,] 2.32298642
#> [20,] -0.05917846
#> [21,] -0.99745118
#>
#> $fitted.values
#> [,1]
#> [1,] 22.603640
#> [2,] 25.488996
#> [3,] 20.386152
#> [4,] 23.038216
#> [5,] 22.015927
#> [6,] 19.821089
#> [7,] 19.821089
#> [8,] 15.190578
#> [9,] 16.583831
#> [10,] 16.378941
#> [11,] 9.456530
#> [12,] 8.384057
#> [13,] 29.851714
#> [14,] 28.482905
#> [15,] 24.751032
#> [16,] 18.522736
#> [17,] 13.796614
#> [18,] 16.292311
#> [19,] 28.077014
#> [20,] 15.859178
#> [21,] 20.697451
#>
#> $lenb
#> [1] 17
#>
#> $coefficients
#> [,1]
#> [1,] 30.26969001
#> [2,] -4.09780467
#> [3,] -0.03594552
#>
#> $x
#> [,1] [,2] [,3]
#> [1,] 1 1.362 58
#> [2,] 1 0.807 41
#> [3,] 1 1.947 53
#> [4,] 1 1.677 10
#> [5,] 1 1.637 43
#> [6,] 1 1.927 71
#> [7,] 1 1.927 71
#> [8,] 1 2.557 128
#> [9,] 1 2.217 128
#> [10,] 1 2.267 128
#> [11,] 1 3.737 153
#> [12,] 1 3.911 163
#> [13,] 1 0.102 0
#> [14,] 1 0.322 13
#> [15,] 1 0.952 45
#> [16,] 1 2.007 98
#> [17,] 1 2.327 193
#> [18,] 1 2.332 123
#> [19,] 1 0.000 61
#> [20,] 1 1.657 212
#> [21,] 1 1.257 123
#>
#> attr(,"class")
#> [1] "mars"
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> regr.mse
#> 9.835201