Regression MultilayerPerceptron Learner
Source:R/learner_RWeka_regr_multilayer_perceptron.R
mlr_learners_regr.multilayer_perceptron.RdRegressor that uses backpropagation to learn a multi-layer perceptron.
Calls RWeka::make_Weka_classifier() from RWeka.
Custom mlr3 parameters
output_debug_info:original id: output-debug-info
do_not_check_capabilities:original id: do-not-check-capabilities
num_decimal_places:original id: num-decimal-places
batch_size:original id: batch-size
Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern
Gremoved:GUI will be opened
Reason for change: The parameter is removed because we don't want to launch GUI.
Parameters
| Id | Type | Default | Levels | Range |
| subset | untyped | - | - | |
| na.action | untyped | - | - | |
| L | numeric | 0.3 | \([0, 1]\) | |
| M | numeric | 0.2 | \([0, 1]\) | |
| N | integer | 500 | \([1, \infty)\) | |
| V | numeric | 0 | \([0, 100]\) | |
| S | integer | 0 | \([0, \infty)\) | |
| E | integer | 20 | \([1, \infty)\) | |
| A | logical | FALSE | TRUE, FALSE | - |
| B | logical | FALSE | TRUE, FALSE | - |
| H | untyped | "a" | - | |
| C | logical | FALSE | TRUE, FALSE | - |
| I | logical | FALSE | TRUE, FALSE | - |
| R | logical | FALSE | TRUE, FALSE | - |
| D | logical | FALSE | TRUE, FALSE | - |
| output_debug_info | logical | FALSE | TRUE, FALSE | - |
| do_not_check_capabilities | logical | FALSE | TRUE, FALSE | - |
| num_decimal_places | integer | 2 | \([1, \infty)\) | |
| batch_size | integer | 100 | \([1, \infty)\) | |
| options | untyped | NULL | - |
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrMultilayerPerceptron
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerRegr$predict_newdata_fast()
Method marshal()
Marshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::marshal_model().
Method unmarshal()
Unmarshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::unmarshal_model().
Examples
# Define the Learner
learner = lrn("regr.multilayer_perceptron")
print(learner)
#>
#> ── <LearnerRegrMultilayerPerceptron> (regr.multilayer_perceptron): MultilayerPer
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and RWeka
#> • Predict Types: [response]
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: marshal and missings
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("mtcars")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> Linear Node 0
#> Inputs Weights
#> Threshold 0.3228413970812301
#> Node 1 -0.4281243216888703
#> Node 2 -1.220348099534411
#> Node 3 2.1785158690520308
#> Node 4 1.0702394760707403
#> Node 5 -0.3973831388891785
#> Sigmoid Node 1
#> Inputs Weights
#> Threshold -0.8990345143683174
#> Attrib am 1.1857930281999187
#> Attrib carb 0.8569624462149358
#> Attrib cyl -0.39234736575953794
#> Attrib disp -0.07521110026227808
#> Attrib drat 0.06981746424034566
#> Attrib gear 0.25539828683796956
#> Attrib hp 0.31699294567803743
#> Attrib qsec -0.07708427480499495
#> Attrib vs -0.014174260559722015
#> Attrib wt -0.16003763053356437
#> Sigmoid Node 2
#> Inputs Weights
#> Threshold 1.3467731699540713
#> Attrib am 1.3278594355210587
#> Attrib carb 2.044998059453605
#> Attrib cyl 0.5766513243650552
#> Attrib disp -1.0850841662499673
#> Attrib drat -0.6898199907177687
#> Attrib gear -1.0323408231117193
#> Attrib hp 0.28249311898064433
#> Attrib qsec 0.7506679531378676
#> Attrib vs -0.39316618269303316
#> Attrib wt 0.23605100276068966
#> Sigmoid Node 3
#> Inputs Weights
#> Threshold -2.238344128359555
#> Attrib am 1.9642528281841396
#> Attrib carb -0.9481785927763928
#> Attrib cyl 0.577163464298158
#> Attrib disp 0.1229620941990554
#> Attrib drat -7.956325951295855E-4
#> Attrib gear 0.7976738530784522
#> Attrib hp -0.041095807155239875
#> Attrib qsec 2.3687134608853175
#> Attrib vs -0.6691192787690724
#> Attrib wt -1.2924298103488359
#> Sigmoid Node 4
#> Inputs Weights
#> Threshold -1.4927346091965066
#> Attrib am 1.4138343751602964
#> Attrib carb -0.34741556495151804
#> Attrib cyl 0.3167945407708345
#> Attrib disp 0.452754413043813
#> Attrib drat 0.21061186496016654
#> Attrib gear 0.817474595338233
#> Attrib hp 0.4845709297122194
#> Attrib qsec 1.0471557403073217
#> Attrib vs -0.8300463541108667
#> Attrib wt -0.6780624767248519
#> Sigmoid Node 5
#> Inputs Weights
#> Threshold -0.8183376114128291
#> Attrib am 1.2157240886030325
#> Attrib carb 0.8368817844654199
#> Attrib cyl -0.3074992670937502
#> Attrib disp -0.08171907671593195
#> Attrib drat 0.13831062959127732
#> Attrib gear 0.3013601780365328
#> Attrib hp 0.3333393211391736
#> Attrib qsec -0.04907694689886912
#> Attrib vs -0.05002755717954667
#> Attrib wt -0.16319311950136398
#> Class
#> Input
#> Node 0
#>
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> regr.mse
#> 53.10568