Regression MultilayerPerceptron Learner
Source:R/learner_RWeka_regr_multilayer_perceptron.R
mlr_learners_regr.multilayer_perceptron.Rd
Regressor that uses backpropagation to learn a multi-layer perceptron.
Calls RWeka::make_Weka_classifier()
from RWeka.
Custom mlr3 parameters
output_debug_info
:original id: output-debug-info
do_not_check_capabilities
:original id: do-not-check-capabilities
num_decimal_places
:original id: num-decimal-places
batch_size
:original id: batch-size
Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern
G
removed:GUI will be opened
Reason for change: The parameter is removed because we don't want to launch GUI.
Parameters
Id | Type | Default | Levels | Range |
subset | untyped | - | - | |
na.action | untyped | - | - | |
L | numeric | 0.3 | \([0, 1]\) | |
M | numeric | 0.2 | \([0, 1]\) | |
N | integer | 500 | \([1, \infty)\) | |
V | numeric | 0 | \([0, 100]\) | |
S | integer | 0 | \([0, \infty)\) | |
E | integer | 20 | \([1, \infty)\) | |
A | logical | FALSE | TRUE, FALSE | - |
B | logical | FALSE | TRUE, FALSE | - |
H | untyped | "a" | - | |
C | logical | FALSE | TRUE, FALSE | - |
I | logical | FALSE | TRUE, FALSE | - |
R | logical | FALSE | TRUE, FALSE | - |
D | logical | FALSE | TRUE, FALSE | - |
output_debug_info | logical | FALSE | TRUE, FALSE | - |
do_not_check_capabilities | logical | FALSE | TRUE, FALSE | - |
num_decimal_places | integer | 2 | \([1, \infty)\) | |
batch_size | integer | 100 | \([1, \infty)\) | |
options | untyped | NULL | - |
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerRegr
-> LearnerRegrMultilayerPerceptron
Methods
Inherited methods
mlr3::Learner$base_learner()
mlr3::Learner$configure()
mlr3::Learner$encapsulate()
mlr3::Learner$format()
mlr3::Learner$help()
mlr3::Learner$predict()
mlr3::Learner$predict_newdata()
mlr3::Learner$print()
mlr3::Learner$reset()
mlr3::Learner$selected_features()
mlr3::Learner$train()
mlr3::LearnerRegr$predict_newdata_fast()
Method marshal()
Marshal the learner's model.
Arguments
...
(any)
Additional arguments passed tomlr3::marshal_model()
.
Method unmarshal()
Unmarshal the learner's model.
Arguments
...
(any)
Additional arguments passed tomlr3::unmarshal_model()
.
Examples
# Define the Learner
learner = lrn("regr.multilayer_perceptron")
print(learner)
#>
#> ── <LearnerRegrMultilayerPerceptron> (regr.multilayer_perceptron): MultilayerPer
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and RWeka
#> • Predict Types: [response]
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: marshal and missings
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("mtcars")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> Linear Node 0
#> Inputs Weights
#> Threshold 0.8805477410117464
#> Node 1 -0.36522255103137213
#> Node 2 -1.5395701961881967
#> Node 3 1.121212869516129
#> Node 4 0.2066905942656596
#> Node 5 -1.0059563733879422
#> Sigmoid Node 1
#> Inputs Weights
#> Threshold -1.3385257809368025
#> Attrib am 0.16566963120073375
#> Attrib carb 0.37177881964871246
#> Attrib cyl 0.26479222729558755
#> Attrib disp 0.4616460905991538
#> Attrib drat 0.22205992023163798
#> Attrib gear 0.5550660497441215
#> Attrib hp 0.6311912352108172
#> Attrib qsec 0.4302731844603281
#> Attrib vs 0.1357658026762731
#> Attrib wt 0.9437108474800723
#> Sigmoid Node 2
#> Inputs Weights
#> Threshold 1.7660469128963137
#> Attrib am 0.34958559040752163
#> Attrib carb 2.299398335503376
#> Attrib cyl -0.1364172785733963
#> Attrib disp -1.6076137328504694
#> Attrib drat -1.050345526356098
#> Attrib gear -1.1394108563293948
#> Attrib hp 1.4434583744169442
#> Attrib qsec -0.32748527393688287
#> Attrib vs -0.10145831357571154
#> Attrib wt 3.81743657988031
#> Sigmoid Node 3
#> Inputs Weights
#> Threshold -0.5880137317022476
#> Attrib am -0.4552556881769333
#> Attrib carb 1.622645614485943
#> Attrib cyl -0.2694378375272045
#> Attrib disp 1.5826203738364022
#> Attrib drat 0.04939491501601247
#> Attrib gear 0.7002604330048509
#> Attrib hp 0.26674997170861486
#> Attrib qsec -0.6873456335271946
#> Attrib vs -0.4106907595250257
#> Attrib wt -1.1886922482465785
#> Sigmoid Node 4
#> Inputs Weights
#> Threshold -1.1825020171685512
#> Attrib am 0.01766400603383531
#> Attrib carb 0.3563469830792288
#> Attrib cyl -0.15241821258959806
#> Attrib disp 0.36044254377066437
#> Attrib drat 0.4453959178236334
#> Attrib gear 0.32191708251397344
#> Attrib hp 0.278152742839177
#> Attrib qsec 0.3457481402261244
#> Attrib vs -0.01200036675119911
#> Attrib wt 0.31413483311457024
#> Sigmoid Node 5
#> Inputs Weights
#> Threshold -1.5295346070726694
#> Attrib am 0.27346488570021954
#> Attrib carb 0.4870892019169148
#> Attrib cyl 0.5568344599977038
#> Attrib disp 0.6175177921472667
#> Attrib drat 0.1823846055964963
#> Attrib gear 0.6502360188927215
#> Attrib hp 1.0225300297384978
#> Attrib qsec 0.6168591649762115
#> Attrib vs 0.26506742358158597
#> Attrib wt 1.5469478758129502
#> Class
#> Input
#> Node 0
#>
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> regr.mse
#> 30.21625