Skip to contents

Regressor that uses backpropagation to learn a multi-layer perceptron. Calls RWeka::make_Weka_classifier() from RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

  • G removed:

    • GUI will be opened

  • Reason for change: The parameter is removed because we don't want to launch GUI.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.multilayer_perceptron")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

IdTypeDefaultLevelsRange
subsetuntyped--
na.actionuntyped--
Lnumeric0.3\([0, 1]\)
Mnumeric0.2\([0, 1]\)
Ninteger500\([1, \infty)\)
Vnumeric0\([0, 100]\)
Sinteger0\([0, \infty)\)
Einteger20\([1, \infty)\)
AlogicalFALSETRUE, FALSE-
BlogicalFALSETRUE, FALSE-
Huntyped"a"-
ClogicalFALSETRUE, FALSE-
IlogicalFALSETRUE, FALSE-
RlogicalFALSETRUE, FALSE-
DlogicalFALSETRUE, FALSE-
output_debug_infologicalFALSETRUE, FALSE-
do_not_check_capabilitieslogicalFALSETRUE, FALSE-
num_decimal_placesinteger2\([1, \infty)\)
batch_sizeinteger100\([1, \infty)\)
optionsuntypedNULL-

See also

Author

damirpolat

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrMultilayerPerceptron

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerRegrMultilayerPerceptron$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = mlr3::lrn("regr.multilayer_perceptron")
print(learner)
#> <LearnerRegrMultilayerPerceptron:regr.multilayer_perceptron>: MultilayerPerceptron
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, RWeka
#> * Predict Types:  [response]
#> * Feature Types: logical, integer, numeric, factor, ordered
#> * Properties: missings

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> Linear Node 0
#>     Inputs    Weights
#>     Threshold    -0.022113282127482547
#>     Node 1    0.2557093842144147
#>     Node 2    -1.0536359659615149
#>     Node 3    2.572692905857619
#>     Node 4    0.32757601891993166
#>     Node 5    -1.3402606542191344
#> Sigmoid Node 1
#>     Inputs    Weights
#>     Threshold    -1.1472722416401655
#>     Attrib am    0.24823704333080127
#>     Attrib carb    0.19640832220228036
#>     Attrib cyl    -0.0019916954179373604
#>     Attrib disp    0.2656243080606898
#>     Attrib drat    0.22258747880004034
#>     Attrib gear    0.06853180474282601
#>     Attrib hp    0.31892201137461207
#>     Attrib qsec    0.21636067595323752
#>     Attrib vs    0.18979191547680258
#>     Attrib wt    -0.01662644627341368
#> Sigmoid Node 2
#>     Inputs    Weights
#>     Threshold    -0.3375245496929146
#>     Attrib am    -0.4625441716309757
#>     Attrib carb    1.3839334023317367
#>     Attrib cyl    0.3865004824615012
#>     Attrib disp    -1.003605679210137
#>     Attrib drat    0.06772489674818413
#>     Attrib gear    0.5826203457896266
#>     Attrib hp    -0.5693435731318803
#>     Attrib qsec    -0.3898040693050207
#>     Attrib vs    -0.6898020624398125
#>     Attrib wt    0.37084268435540574
#> Sigmoid Node 3
#>     Inputs    Weights
#>     Threshold    -2.2558293341131077
#>     Attrib am    0.5268187539299777
#>     Attrib carb    1.7921399841937413
#>     Attrib cyl    -0.1001297241506174
#>     Attrib disp    -0.11241442781997374
#>     Attrib drat    0.35121508285722935
#>     Attrib gear    2.1857368924163962
#>     Attrib hp    -0.15262618751967455
#>     Attrib qsec    2.5458176469346374
#>     Attrib vs    0.02077506845002941
#>     Attrib wt    -0.2790330848072306
#> Sigmoid Node 4
#>     Inputs    Weights
#>     Threshold    -1.2254678191946315
#>     Attrib am    0.3867238095891085
#>     Attrib carb    0.2626556203089563
#>     Attrib cyl    0.05706892850640662
#>     Attrib disp    0.27684244414318987
#>     Attrib drat    0.36430203467793204
#>     Attrib gear    -0.03982989769604959
#>     Attrib hp    0.4152687672894403
#>     Attrib qsec    0.3974728786519584
#>     Attrib vs    0.07849288950402282
#>     Attrib wt    -0.009198027795271752
#> Sigmoid Node 5
#>     Inputs    Weights
#>     Threshold    -1.6683823716273836
#>     Attrib am    0.3846586487197185
#>     Attrib carb    1.429903784021742
#>     Attrib cyl    0.44145702358715583
#>     Attrib disp    0.7716049907048158
#>     Attrib drat    -1.2261889482645092
#>     Attrib gear    0.9839147239812467
#>     Attrib hp    -0.8681533856606424
#>     Attrib qsec    0.8182827128972197
#>     Attrib vs    0.10491812597259188
#>     Attrib wt    0.6867435045416281
#> Class 
#>     Input
#>     Node 0
#> 


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> regr.mse 
#>  52.5294