Regression MultilayerPerceptron Learner
Source:R/learner_RWeka_regr_multilayer_perceptron.R
mlr_learners_regr.multilayer_perceptron.RdRegressor that uses backpropagation to learn a multi-layer perceptron.
Calls RWeka::make_Weka_classifier() from RWeka.
Custom mlr3 parameters
output_debug_info:original id: output-debug-info
do_not_check_capabilities:original id: do-not-check-capabilities
num_decimal_places:original id: num-decimal-places
batch_size:original id: batch-size
Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern
Gremoved:GUI will be opened
Reason for change: The parameter is removed because we don't want to launch GUI.
Parameters
| Id | Type | Default | Levels | Range |
| subset | untyped | - | - | |
| na.action | untyped | - | - | |
| L | numeric | 0.3 | \([0, 1]\) | |
| M | numeric | 0.2 | \([0, 1]\) | |
| N | integer | 500 | \([1, \infty)\) | |
| V | numeric | 0 | \([0, 100]\) | |
| S | integer | 0 | \([0, \infty)\) | |
| E | integer | 20 | \([1, \infty)\) | |
| A | logical | FALSE | TRUE, FALSE | - |
| B | logical | FALSE | TRUE, FALSE | - |
| H | untyped | "a" | - | |
| C | logical | FALSE | TRUE, FALSE | - |
| I | logical | FALSE | TRUE, FALSE | - |
| R | logical | FALSE | TRUE, FALSE | - |
| D | logical | FALSE | TRUE, FALSE | - |
| output_debug_info | logical | FALSE | TRUE, FALSE | - |
| do_not_check_capabilities | logical | FALSE | TRUE, FALSE | - |
| num_decimal_places | integer | 2 | \([1, \infty)\) | |
| batch_size | integer | 100 | \([1, \infty)\) | |
| options | untyped | NULL | - |
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrMultilayerPerceptron
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerRegr$predict_newdata_fast()
Method marshal()
Marshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::marshal_model().
Method unmarshal()
Unmarshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::unmarshal_model().
Examples
# Define the Learner
learner = lrn("regr.multilayer_perceptron")
print(learner)
#>
#> ── <LearnerRegrMultilayerPerceptron> (regr.multilayer_perceptron): MultilayerPer
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and RWeka
#> • Predict Types: [response]
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: marshal and missings
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("mtcars")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> Linear Node 0
#> Inputs Weights
#> Threshold 1.8950681405710506
#> Node 1 -1.2475946531581372
#> Node 2 -1.7334581482958777
#> Node 3 0.06004970081993806
#> Node 4 -0.3754205699283403
#> Node 5 -0.6488886023308262
#> Sigmoid Node 1
#> Inputs Weights
#> Threshold 0.16356904927727503
#> Attrib am 0.3896725562418164
#> Attrib carb 2.8103140750893636
#> Attrib cyl -0.11007998939664757
#> Attrib disp -0.02151203748003661
#> Attrib drat -0.8169283320783575
#> Attrib gear 0.549144238372441
#> Attrib hp -0.9047431785258506
#> Attrib qsec 0.12118017954634097
#> Attrib vs -0.7412983870774387
#> Attrib wt -0.4461990999701312
#> Sigmoid Node 2
#> Inputs Weights
#> Threshold 0.9868062763914182
#> Attrib am -0.752107141654053
#> Attrib carb -1.3162608670906903
#> Attrib cyl 1.6715530882960272
#> Attrib disp 0.5193279873953042
#> Attrib drat 0.4048703873645839
#> Attrib gear -1.188341483400125
#> Attrib hp 0.3711988300437347
#> Attrib qsec 0.7152470050442559
#> Attrib vs -0.48182879324977207
#> Attrib wt 0.308666077877024
#> Sigmoid Node 3
#> Inputs Weights
#> Threshold -0.8769177056223835
#> Attrib am 0.4834202294260112
#> Attrib carb 0.08852834060113159
#> Attrib cyl -0.15160949959830672
#> Attrib disp 0.016170186888669127
#> Attrib drat 0.22860363376587828
#> Attrib gear 0.2986124483489797
#> Attrib hp 0.21734246777704802
#> Attrib qsec -0.013348030938338312
#> Attrib vs 0.15540059236709777
#> Attrib wt -0.10245532435020908
#> Sigmoid Node 4
#> Inputs Weights
#> Threshold -0.7128489541602746
#> Attrib am 0.29739606394298446
#> Attrib carb 0.48632725439904173
#> Attrib cyl -0.3421669625620138
#> Attrib disp -0.02425690533473128
#> Attrib drat 0.10558089813533227
#> Attrib gear 0.10268165146994475
#> Attrib hp -0.13133438422574029
#> Attrib qsec 0.39964964618528453
#> Attrib vs 0.3672989744197057
#> Attrib wt -0.031781391981596935
#> Sigmoid Node 5
#> Inputs Weights
#> Threshold -0.03406282663017798
#> Attrib am 0.36391298253865234
#> Attrib carb 1.629526355035417
#> Attrib cyl -0.20746865524378091
#> Attrib disp -0.09441440421097884
#> Attrib drat -0.2822831459346321
#> Attrib gear 0.3995101665476176
#> Attrib hp -0.7641902427568921
#> Attrib qsec 0.5855514707380789
#> Attrib vs -0.31270740315794915
#> Attrib wt -0.1133113371971244
#> Class
#> Input
#> Node 0
#>
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> regr.mse
#> 29.55655