Regression MultilayerPerceptron Learner
Source:R/learner_RWeka_regr_multilayer_perceptron.R
mlr_learners_regr.multilayer_perceptron.RdRegressor that uses backpropagation to learn a multi-layer perceptron.
Calls RWeka::make_Weka_classifier() from RWeka.
Custom mlr3 parameters
output_debug_info:original id: output-debug-info
do_not_check_capabilities:original id: do-not-check-capabilities
num_decimal_places:original id: num-decimal-places
batch_size:original id: batch-size
Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern
Gremoved:GUI will be opened
Reason for change: The parameter is removed because we don't want to launch GUI.
Parameters
| Id | Type | Default | Levels | Range |
| subset | untyped | - | - | |
| na.action | untyped | - | - | |
| L | numeric | 0.3 | \([0, 1]\) | |
| M | numeric | 0.2 | \([0, 1]\) | |
| N | integer | 500 | \([1, \infty)\) | |
| V | numeric | 0 | \([0, 100]\) | |
| S | integer | 0 | \([0, \infty)\) | |
| E | integer | 20 | \([1, \infty)\) | |
| A | logical | FALSE | TRUE, FALSE | - |
| B | logical | FALSE | TRUE, FALSE | - |
| H | untyped | "a" | - | |
| C | logical | FALSE | TRUE, FALSE | - |
| I | logical | FALSE | TRUE, FALSE | - |
| R | logical | FALSE | TRUE, FALSE | - |
| D | logical | FALSE | TRUE, FALSE | - |
| output_debug_info | logical | FALSE | TRUE, FALSE | - |
| do_not_check_capabilities | logical | FALSE | TRUE, FALSE | - |
| num_decimal_places | integer | 2 | \([1, \infty)\) | |
| batch_size | integer | 100 | \([1, \infty)\) | |
| options | untyped | NULL | - |
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrMultilayerPerceptron
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerRegr$predict_newdata_fast()
Method marshal()
Marshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::marshal_model().
Method unmarshal()
Unmarshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::unmarshal_model().
Examples
# Define the Learner
learner = lrn("regr.multilayer_perceptron")
print(learner)
#>
#> ── <LearnerRegrMultilayerPerceptron> (regr.multilayer_perceptron): MultilayerPer
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and RWeka
#> • Predict Types: [response]
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: marshal and missings
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("mtcars")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> Linear Node 0
#> Inputs Weights
#> Threshold 1.4061628709494653
#> Node 1 -0.22767259509015725
#> Node 2 -1.962308085019038
#> Node 3 -1.0651777285366386
#> Node 4 -0.642579482095755
#> Node 5 0.5937439962176824
#> Sigmoid Node 1
#> Inputs Weights
#> Threshold -0.8981424791707306
#> Attrib am -0.11268165880933799
#> Attrib carb 0.5657753074140192
#> Attrib cyl -0.2864205156829589
#> Attrib disp 0.3163035325584675
#> Attrib drat 0.1095729013536005
#> Attrib gear -0.22907057718029908
#> Attrib hp 0.6229507281159385
#> Attrib qsec 0.0887840729262718
#> Attrib vs -0.01557340952167525
#> Attrib wt 0.008383065350210009
#> Sigmoid Node 2
#> Inputs Weights
#> Threshold 2.4112126841519226
#> Attrib am 0.13480582638694494
#> Attrib carb -0.034550130776182165
#> Attrib cyl -0.2809736596858069
#> Attrib disp 0.6324550569151409
#> Attrib drat 1.7880095147264208
#> Attrib gear -1.8531483201697638
#> Attrib hp 1.5203249370189946
#> Attrib qsec -0.8930311377762803
#> Attrib vs -1.1128219571293327
#> Attrib wt 3.1163663989968216
#> Sigmoid Node 3
#> Inputs Weights
#> Threshold -0.8328567136660378
#> Attrib am 0.1378782307052939
#> Attrib carb 1.1233159114801272
#> Attrib cyl -0.308717435064931
#> Attrib disp 0.05428711227745474
#> Attrib drat 0.8740189706591664
#> Attrib gear -0.47779272689531377
#> Attrib hp 0.9609970624622497
#> Attrib qsec 0.2713730141273784
#> Attrib vs 0.25521477419519545
#> Attrib wt 0.09330178424770905
#> Sigmoid Node 4
#> Inputs Weights
#> Threshold -0.8397000894215696
#> Attrib am -0.020080984499304955
#> Attrib carb 0.8305241549690834
#> Attrib cyl -0.2951630750746551
#> Attrib disp 0.16621133546462774
#> Attrib drat 0.6151257665855657
#> Attrib gear -0.35064477156337764
#> Attrib hp 0.7195359998034568
#> Attrib qsec 0.21799981812920907
#> Attrib vs -0.04756191829373481
#> Attrib wt -0.07536431233560165
#> Sigmoid Node 5
#> Inputs Weights
#> Threshold -0.481721364958586
#> Attrib am 0.20903370524241532
#> Attrib carb 0.5712286586549968
#> Attrib cyl 0.024238529332014612
#> Attrib disp 0.5605652953514442
#> Attrib drat -0.26152508680188435
#> Attrib gear 0.36137913542916855
#> Attrib hp 0.7822450793200952
#> Attrib qsec -0.7554684862237349
#> Attrib vs 0.12875829208521644
#> Attrib wt 0.21045472492607306
#> Class
#> Input
#> Node 0
#>
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> regr.mse
#> 28.20605