Regression MultilayerPerceptron Learner
Source:R/learner_RWeka_regr_multilayer_perceptron.R
mlr_learners_regr.multilayer_perceptron.Rd
Regressor that uses backpropagation to learn a multi-layer perceptron.
Calls RWeka::make_Weka_classifier()
from RWeka.
Custom mlr3 parameters
output_debug_info
:original id: output-debug-info
do_not_check_capabilities
:original id: do-not-check-capabilities
num_decimal_places
:original id: num-decimal-places
batch_size
:original id: batch-size
Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern
G
removed:GUI will be opened
Reason for change: The parameter is removed because we don't want to launch GUI.
Parameters
Id | Type | Default | Levels | Range |
subset | untyped | - | - | |
na.action | untyped | - | - | |
L | numeric | 0.3 | \([0, 1]\) | |
M | numeric | 0.2 | \([0, 1]\) | |
N | integer | 500 | \([1, \infty)\) | |
V | numeric | 0 | \([0, 100]\) | |
S | integer | 0 | \([0, \infty)\) | |
E | integer | 20 | \([1, \infty)\) | |
A | logical | FALSE | TRUE, FALSE | - |
B | logical | FALSE | TRUE, FALSE | - |
H | untyped | "a" | - | |
C | logical | FALSE | TRUE, FALSE | - |
I | logical | FALSE | TRUE, FALSE | - |
R | logical | FALSE | TRUE, FALSE | - |
D | logical | FALSE | TRUE, FALSE | - |
output_debug_info | logical | FALSE | TRUE, FALSE | - |
do_not_check_capabilities | logical | FALSE | TRUE, FALSE | - |
num_decimal_places | integer | 2 | \([1, \infty)\) | |
batch_size | integer | 100 | \([1, \infty)\) | |
options | untyped | NULL | - |
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerRegr
-> LearnerRegrMultilayerPerceptron
Methods
Inherited methods
mlr3::Learner$base_learner()
mlr3::Learner$configure()
mlr3::Learner$encapsulate()
mlr3::Learner$format()
mlr3::Learner$help()
mlr3::Learner$predict()
mlr3::Learner$predict_newdata()
mlr3::Learner$print()
mlr3::Learner$reset()
mlr3::Learner$selected_features()
mlr3::Learner$train()
mlr3::LearnerRegr$predict_newdata_fast()
Method marshal()
Marshal the learner's model.
Arguments
...
(any)
Additional arguments passed tomlr3::marshal_model()
.
Method unmarshal()
Unmarshal the learner's model.
Arguments
...
(any)
Additional arguments passed tomlr3::unmarshal_model()
.
Examples
# Define the Learner
learner = lrn("regr.multilayer_perceptron")
print(learner)
#>
#> ── <LearnerRegrMultilayerPerceptron> (regr.multilayer_perceptron): MultilayerPer
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and RWeka
#> • Predict Types: [response]
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: marshal and missings
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("mtcars")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> Linear Node 0
#> Inputs Weights
#> Threshold 1.214989776275969
#> Node 1 -1.108818579156472
#> Node 2 -2.066551878155648
#> Node 3 0.7549446726478414
#> Node 4 1.218140676962109
#> Node 5 0.12684905917061826
#> Sigmoid Node 1
#> Inputs Weights
#> Threshold -1.6820802255514575
#> Attrib am 0.4524521510787386
#> Attrib carb 1.5784017823940255
#> Attrib cyl 0.31879865313676814
#> Attrib disp 0.9656368576524949
#> Attrib drat -0.48092182437572417
#> Attrib gear 1.1062348296092752
#> Attrib hp -0.1195647239136524
#> Attrib qsec -0.6106850227259536
#> Attrib vs 0.19229144919293767
#> Attrib wt 0.41146358692377444
#> Sigmoid Node 2
#> Inputs Weights
#> Threshold 2.0262561023590187
#> Attrib am -0.8341570579938761
#> Attrib carb -0.6153019835395255
#> Attrib cyl 0.6903298908421238
#> Attrib disp -0.17573062055623154
#> Attrib drat -0.15391384659039434
#> Attrib gear -1.6088291502410723
#> Attrib hp 0.004260056281376257
#> Attrib qsec -1.8563039958320597
#> Attrib vs 0.6131843079196398
#> Attrib wt 0.8694860866120542
#> Sigmoid Node 3
#> Inputs Weights
#> Threshold -1.520380280996677
#> Attrib am -0.5206688533285275
#> Attrib carb -0.6501378793193828
#> Attrib cyl 0.11935119288418879
#> Attrib disp 0.5663008990831525
#> Attrib drat 0.9756299134732489
#> Attrib gear 0.25943081262484824
#> Attrib hp 0.4986805094229953
#> Attrib qsec 0.4455546048808984
#> Attrib vs 0.09948573851838582
#> Attrib wt -0.5708316124255013
#> Sigmoid Node 4
#> Inputs Weights
#> Threshold -1.656487683445735
#> Attrib am -0.7589399160900813
#> Attrib carb -1.2087444117962394
#> Attrib cyl 0.41566161074624347
#> Attrib disp 0.7689950483998927
#> Attrib drat 1.5974277165031896
#> Attrib gear 0.326924748444612
#> Attrib hp 0.5580132512642281
#> Attrib qsec 1.0539194312113502
#> Attrib vs -0.12484037129586466
#> Attrib wt -0.8587822754496304
#> Sigmoid Node 5
#> Inputs Weights
#> Threshold -1.2041940514845
#> Attrib am 0.09190288934516136
#> Attrib carb 0.31602257024947056
#> Attrib cyl -0.10639180616271887
#> Attrib disp 0.09327694045693859
#> Attrib drat 0.37326717955625294
#> Attrib gear 0.374621829481025
#> Attrib hp 0.07784704617422243
#> Attrib qsec -0.19586504958802878
#> Attrib vs 0.218088993639872
#> Attrib wt -0.02876407857994059
#> Class
#> Input
#> Node 0
#>
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> regr.mse
#> 44.05206