Regression MultilayerPerceptron Learner
Source:R/learner_RWeka_regr_multilayer_perceptron.R
mlr_learners_regr.multilayer_perceptron.RdRegressor that uses backpropagation to learn a multi-layer perceptron.
Calls RWeka::make_Weka_classifier() from RWeka.
Custom mlr3 parameters
output_debug_info:original id: output-debug-info
do_not_check_capabilities:original id: do-not-check-capabilities
num_decimal_places:original id: num-decimal-places
batch_size:original id: batch-size
Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern
Gremoved:GUI will be opened
Reason for change: The parameter is removed because we don't want to launch GUI.
Parameters
| Id | Type | Default | Levels | Range |
| subset | untyped | - | - | |
| na.action | untyped | - | - | |
| L | numeric | 0.3 | \([0, 1]\) | |
| M | numeric | 0.2 | \([0, 1]\) | |
| N | integer | 500 | \([1, \infty)\) | |
| V | numeric | 0 | \([0, 100]\) | |
| S | integer | 0 | \([0, \infty)\) | |
| E | integer | 20 | \([1, \infty)\) | |
| A | logical | FALSE | TRUE, FALSE | - |
| B | logical | FALSE | TRUE, FALSE | - |
| H | untyped | "a" | - | |
| C | logical | FALSE | TRUE, FALSE | - |
| I | logical | FALSE | TRUE, FALSE | - |
| R | logical | FALSE | TRUE, FALSE | - |
| D | logical | FALSE | TRUE, FALSE | - |
| output_debug_info | logical | FALSE | TRUE, FALSE | - |
| do_not_check_capabilities | logical | FALSE | TRUE, FALSE | - |
| num_decimal_places | integer | 2 | \([1, \infty)\) | |
| batch_size | integer | 100 | \([1, \infty)\) | |
| options | untyped | NULL | - |
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrMultilayerPerceptron
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerRegr$predict_newdata_fast()
Method marshal()
Marshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::marshal_model().
Method unmarshal()
Unmarshal the learner's model.
Arguments
...(any)
Additional arguments passed tomlr3::unmarshal_model().
Examples
# Define the Learner
learner = lrn("regr.multilayer_perceptron")
print(learner)
#>
#> ── <LearnerRegrMultilayerPerceptron> (regr.multilayer_perceptron): MultilayerPer
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and RWeka
#> • Predict Types: [response]
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: marshal and missings
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("mtcars")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> Linear Node 0
#> Inputs Weights
#> Threshold -1.3900559330440512
#> Node 1 1.6982407128957555
#> Node 2 -1.599841503806081
#> Node 3 1.3422507972103381
#> Node 4 0.7369828339736344
#> Node 5 1.5977727252705296
#> Sigmoid Node 1
#> Inputs Weights
#> Threshold -1.1447244805914123
#> Attrib am -1.066492194124621
#> Attrib carb 0.07666289870589603
#> Attrib cyl -0.4839278622962313
#> Attrib disp 1.1792580337925187
#> Attrib drat 0.778709812083123
#> Attrib gear 0.4266187244033766
#> Attrib hp -1.1562030363670208
#> Attrib qsec -0.26912152403424705
#> Attrib vs 1.4543287207019826
#> Attrib wt -1.9296017393456906
#> Sigmoid Node 2
#> Inputs Weights
#> Threshold 0.833369376252109
#> Attrib am -0.22922835590977594
#> Attrib carb 0.9612383244790315
#> Attrib cyl -0.020160467643732034
#> Attrib disp -0.659614782918205
#> Attrib drat 1.4369835297678215
#> Attrib gear 0.1635828450696748
#> Attrib hp 2.1258056465403565
#> Attrib qsec -0.7986953914933181
#> Attrib vs 0.8032677639711645
#> Attrib wt -0.5590942559501252
#> Sigmoid Node 3
#> Inputs Weights
#> Threshold -1.0254977947788841
#> Attrib am 0.27935602154247363
#> Attrib carb 1.344643247678221
#> Attrib cyl -0.16141664797254657
#> Attrib disp -0.603530771031573
#> Attrib drat 0.5767054760502416
#> Attrib gear 1.027042223416753
#> Attrib hp -1.1205075004890688
#> Attrib qsec 0.07110462652256423
#> Attrib vs -0.37255719555399247
#> Attrib wt -2.0355620294966097
#> Sigmoid Node 4
#> Inputs Weights
#> Threshold -0.9740817957683883
#> Attrib am 0.35884539602458543
#> Attrib carb 1.078779664297928
#> Attrib cyl -0.23749401725304148
#> Attrib disp -0.18176571281446163
#> Attrib drat 0.04679780102103328
#> Attrib gear 0.94614509993447
#> Attrib hp -0.5995286972936607
#> Attrib qsec 0.16439416594068096
#> Attrib vs -0.16672688344510259
#> Attrib wt -1.391288664947591
#> Sigmoid Node 5
#> Inputs Weights
#> Threshold -0.6046240121143505
#> Attrib am 0.15983118721422673
#> Attrib carb 0.5396808693002022
#> Attrib cyl -0.0882646113181626
#> Attrib disp 1.131191872714862
#> Attrib drat 0.3349938464975808
#> Attrib gear 0.3789320947180418
#> Attrib hp -0.20605456549518836
#> Attrib qsec -0.6046892113464062
#> Attrib vs 0.10408968048662935
#> Attrib wt 1.61658323768839
#> Class
#> Input
#> Node 0
#>
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> regr.mse
#> 41.78049