Regression Random Forest Learner
mlr_learners_regr.randomForest.Rd
Random forest for regression.
Calls randomForest::randomForest()
from randomForest.
Meta Information
Task type: “regr”
Predict Types: “response”
Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, randomForest
Parameters
Id | Type | Default | Levels | Range |
ntree | integer | 500 | \([1, \infty)\) | |
mtry | integer | - | \([1, \infty)\) | |
replace | logical | TRUE | TRUE, FALSE | - |
strata | untyped | - | - | |
sampsize | untyped | - | - | |
nodesize | integer | 5 | \([1, \infty)\) | |
maxnodes | integer | - | \([1, \infty)\) | |
importance | character | FALSE | mse, nudepurity, none | - |
localImp | logical | FALSE | TRUE, FALSE | - |
proximity | logical | FALSE | TRUE, FALSE | - |
oob.prox | logical | - | TRUE, FALSE | - |
norm.votes | logical | TRUE | TRUE, FALSE | - |
do.trace | logical | FALSE | TRUE, FALSE | - |
keep.forest | logical | TRUE | TRUE, FALSE | - |
keep.inbag | logical | FALSE | TRUE, FALSE | - |
predict.all | logical | FALSE | TRUE, FALSE | - |
nodes | logical | FALSE | TRUE, FALSE | - |
References
Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324 .
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerRegr
-> LearnerRegrRandomForest
Methods
Method importance()
The importance scores are extracted from the slot importance
.
Parameter 'importance' must be set to either "mse"
or "nodepurity"
.
Returns
Named numeric()
.
Examples
# Define the Learner
learner = mlr3::lrn("regr.randomForest", importance = "mse")
print(learner)
#> <LearnerRegrRandomForest:regr.randomForest>: Random Forest
#> * Model: -
#> * Parameters: importance=mse
#> * Packages: mlr3, mlr3extralearners, randomForest
#> * Predict Types: [response]
#> * Feature Types: logical, integer, numeric, factor, ordered
#> * Properties: importance, oob_error, weights
# Define a Task
task = mlr3::tsk("mtcars")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#>
#> Call:
#> randomForest(formula = formula, data = data, importance = TRUE)
#> Type of random forest: regression
#> Number of trees: 500
#> No. of variables tried at each split: 3
#>
#> Mean of squared residuals: 8.915057
#> % Var explained: 70.88
print(learner$importance())
#> wt disp cyl hp drat vs
#> 8.88600532 6.67657428 4.97593426 4.74961159 1.74862428 0.77465756
#> carb am qsec gear
#> 0.38293531 0.32616341 0.10883192 -0.04668383
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> regr.mse
#> 5.384968