Regression Random Tree Learner
Source:R/learner_RWeka_regr_random_tree.R
mlr_learners_regr.random_tree.Rd
Tree that considers K randomly chosen attributes at each node.
Calls RWeka::make_Weka_classifier()
from RWeka.
Custom mlr3 parameters
output_debug_info
:original id: output-debug-info
do_not_check_capabilities
:original id: do-not-check-capabilities
num_decimal_places
:original id: num-decimal-places
batch_size
:original id: batch-size
Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern
Parameters
Id | Type | Default | Levels | Range |
subset | untyped | - | - | |
na.action | untyped | - | - | |
K | integer | 0 | \([0, \infty)\) | |
M | integer | 1 | \([1, \infty)\) | |
V | numeric | 0.001 | \((-\infty, \infty)\) | |
S | integer | 1 | \((-\infty, \infty)\) | |
depth | integer | 0 | \([0, \infty)\) | |
N | integer | 0 | \([0, \infty)\) | |
U | logical | FALSE | TRUE, FALSE | - |
B | logical | FALSE | TRUE, FALSE | - |
output_debug_info | logical | FALSE | TRUE, FALSE | - |
do_not_check_capabilities | logical | FALSE | TRUE, FALSE | - |
num_decimal_places | integer | 2 | \([1, \infty)\) | |
batch_size | integer | 100 | \([1, \infty)\) | |
options | untyped | NULL | - |
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerRegr
-> LearnerRegrRandomTree
Methods
Inherited methods
mlr3::Learner$base_learner()
mlr3::Learner$configure()
mlr3::Learner$encapsulate()
mlr3::Learner$format()
mlr3::Learner$help()
mlr3::Learner$predict()
mlr3::Learner$predict_newdata()
mlr3::Learner$print()
mlr3::Learner$reset()
mlr3::Learner$selected_features()
mlr3::Learner$train()
mlr3::LearnerRegr$predict_newdata_fast()
Method marshal()
Marshal the learner's model.
Arguments
...
(any)
Additional arguments passed tomlr3::marshal_model()
.
Method unmarshal()
Unmarshal the learner's model.
Arguments
...
(any)
Additional arguments passed tomlr3::unmarshal_model()
.
Examples
# Define the Learner
learner = lrn("regr.random_tree")
print(learner)
#>
#> ── <LearnerRegrRandomTree> (regr.random_tree): Random Tree ─────────────────────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and RWeka
#> • Predict Types: [response]
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: marshal and missings
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("mtcars")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#>
#> RandomTree
#> ==========
#>
#> disp < 120.65
#> | drat < 3.74 : 21.5 (1/0)
#> | drat >= 3.74
#> | | qsec < 19.18
#> | | | drat < 4.68
#> | | | | hp < 102
#> | | | | | carb < 1.5 : 27.3 (1/0)
#> | | | | | carb >= 1.5 : 26 (1/0)
#> | | | | hp >= 102 : 30.4 (1/0)
#> | | | drat >= 4.68 : 30.4 (1/0)
#> | | qsec >= 19.18
#> | | | disp < 74.9 : 33.9 (1/0)
#> | | | disp >= 74.9 : 32.4 (1/0)
#> disp >= 120.65
#> | disp < 266.9
#> | | wt < 3.33 : 21.2 (4/0.04)
#> | | wt >= 3.33
#> | | | carb < 2.5 : 18.1 (1/0)
#> | | | carb >= 2.5
#> | | | | qsec < 18.6 : 19.2 (1/0)
#> | | | | qsec >= 18.6 : 17.8 (1/0)
#> | disp >= 266.9
#> | | qsec < 17.62
#> | | | carb < 3.5
#> | | | | disp < 296.9 : 16.4 (1/0)
#> | | | | disp >= 296.9 : 15.5 (1/0)
#> | | | carb >= 3.5
#> | | | | gear < 4
#> | | | | | drat < 3.48 : 14.7 (1/0)
#> | | | | | drat >= 3.48 : 13.3 (1/0)
#> | | | | gear >= 4
#> | | | | | drat < 3.88 : 15 (1/0)
#> | | | | | drat >= 3.88 : 15.8 (1/0)
#> | | qsec >= 17.62 : 10.4 (1/0)
#>
#> Size of the tree : 35
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> regr.mse
#> 7.575455