Skip to contents

Tree that considers K randomly chosen attributes at each node. Calls RWeka::make_Weka_classifier() from RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.random_tree")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

IdTypeDefaultLevelsRange
subsetuntyped--
na.actionuntyped--
Kinteger0\([0, \infty)\)
Minteger1\([1, \infty)\)
Vnumeric0.001\((-\infty, \infty)\)
Sinteger1\((-\infty, \infty)\)
depthinteger0\([0, \infty)\)
Ninteger0\([0, \infty)\)
UlogicalFALSETRUE, FALSE-
BlogicalFALSETRUE, FALSE-
output_debug_infologicalFALSETRUE, FALSE-
do_not_check_capabilitieslogicalFALSETRUE, FALSE-
num_decimal_placesinteger2\([1, \infty)\)
batch_sizeinteger100\([1, \infty)\)
optionsuntypedNULL-

See also

Author

damirpolat

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrRandomTree

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerRegrRandomTree$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = mlr3::lrn("regr.random_tree")
print(learner)
#> 
#> ── <LearnerRegrRandomTree> (regr.random_tree): Random Tree ─────────────────────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3 and RWeka
#> • Predict Types: [response]
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: missings
#> • Other settings: use_weights = 'error'

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> 
#> RandomTree
#> ==========
#> 
#> disp < 163.8
#> |   wt < 2.26
#> |   |   qsec < 16.8 : 26 (1/0)
#> |   |   qsec >= 16.8
#> |   |   |   drat < 3.92 : 30.4 (1/0)
#> |   |   |   drat >= 3.92
#> |   |   |   |   hp < 59 : 30.4 (1/0)
#> |   |   |   |   hp >= 59 : 32.4 (1/0)
#> |   wt >= 2.26
#> |   |   carb < 3
#> |   |   |   hp < 96 : 22.8 (2/0)
#> |   |   |   hp >= 96 : 21.5 (1/0)
#> |   |   carb >= 3
#> |   |   |   disp < 152.5 : 19.7 (1/0)
#> |   |   |   disp >= 152.5 : 21 (2/0)
#> disp >= 163.8
#> |   wt < 3.81
#> |   |   cyl < 7 : 17.95 (2/0.02)
#> |   |   cyl >= 7
#> |   |   |   qsec < 14.55 : 15.8 (1/0)
#> |   |   |   qsec >= 14.55
#> |   |   |   |   qsec < 16.57
#> |   |   |   |   |   carb < 6 : 14.3 (1/0)
#> |   |   |   |   |   carb >= 6 : 15 (1/0)
#> |   |   |   |   qsec >= 16.57 : 15.2 (2/0)
#> |   wt >= 3.81
#> |   |   hp < 222.5 : 10.4 (2/0)
#> |   |   hp >= 222.5
#> |   |   |   disp < 395 : 13.3 (1/0)
#> |   |   |   disp >= 395 : 14.7 (1/0)
#> 
#> Size of the tree : 31


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> regr.mse 
#> 15.86227