Regression Stochastic Gradient Descent Learner
mlr_learners_regr.sgd.Rd
Stochastic Gradient Descent for learning various linear models.
Calls RWeka::make_Weka_classifier()
from RWeka.
Initial parameter values
F
:Has only 3 out of 5 original loss functions: 2 = squared loss (regression), 3 = epsilon insensitive loss (regression) and 4 = Huber loss (regression) with 2 (squared loss) being the new default
Reason for change: this learner should only contain loss functions appropriate for regression tasks
Custom mlr3 parameters
output_debug_info
:original id: output-debug-info
do_not_check_capabilities
:original id: do-not-check-capabilities
num_decimal_places
:original id: num-decimal-places
batch_size
:original id: batch-size
Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern
Parameters
Id | Type | Default | Levels | Range |
subset | untyped | - | - | |
na.action | untyped | - | - | |
F | character | 2 | 2, 3, 4 | - |
L | numeric | 0.01 | \((-\infty, \infty)\) | |
R | numeric | 1e-04 | \((-\infty, \infty)\) | |
E | integer | 500 | \((-\infty, \infty)\) | |
C | numeric | 0.001 | \((-\infty, \infty)\) | |
N | logical | - | TRUE, FALSE | - |
M | logical | - | TRUE, FALSE | - |
S | integer | 1 | \((-\infty, \infty)\) | |
output_debug_info | logical | FALSE | TRUE, FALSE | - |
do_not_check_capabilities | logical | FALSE | TRUE, FALSE | - |
num_decimal_places | integer | 2 | \([1, \infty)\) | |
batch_size | integer | 100 | \([1, \infty)\) | |
options | untyped | NULL | - |
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3::LearnerRegr
-> LearnerRegrSGD
Examples
# Define the Learner
learner = mlr3::lrn("regr.sgd")
print(learner)
#> <LearnerRegrSGD:regr.sgd>: Stochastic Gradient Descent
#> * Model: -
#> * Parameters: F=2
#> * Packages: mlr3, RWeka
#> * Predict Types: [response]
#> * Feature Types: logical, integer, numeric, factor, ordered
#> * Properties: -
# Define a Task
task = mlr3::tsk("mtcars")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> Loss function: Squared loss (linear regression)
#>
#> mpg =
#>
#> 2.7957 (normalized) am
#> + -5.8808 (normalized) carb
#> + 1.0998 (normalized) cyl
#> + -0.6499 (normalized) disp
#> + 1.0102 (normalized) drat
#> + 3.1386 (normalized) gear
#> + -3.8006 (normalized) hp
#> + 3.9229 (normalized) qsec
#> + 0.7541 (normalized) vs
#> + -5.1633 (normalized) wt
#> + 19.3959
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> regr.mse
#> 9.429876