Skip to contents

Survival akritas estimator. Calls survivalmodels::akritas() from package 'survivalmodels'.

Prediction types

This learner returns two prediction types:

  1. distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated using the internal survivalmodels::predict.akritas() function. The survival matrix uses the unique time points from the training set. We advise to set the parameter ntime which allows to adjust the granularity of these time points to a reasonable number (e.g. 150). This avoids large execution times during prediction.

  2. crank: the expected mortality using survivalmodels::surv_to_risk().

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.akritas")

Meta Information

Parameters

IdTypeDefaultLevelsRange
lambdanumeric0.5\([0, 1]\)
reverselogicalFALSETRUE, FALSE-
ntimeintegerNULL\([1, \infty)\)
round_timeinteger2\([0, \infty)\)

Installation

Package 'survivalmodels' is not on CRAN and has to be install from GitHub via remotes::install_github("RaphaelS1/survivalmodels").

References

Akritas, G M (1994). “Nearest neighbor estimation of a bivariate distribution under random censoring.” The Annals of Statistics, 1299–1327.

See also

Author

RaphaelS1

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvAkritas

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerSurvAkritas$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.