Skip to contents

Generalized linear models with elastic net regularization. Calls glmnet::cv.glmnet() from package glmnet.

Initial parameter values

  • family is set to "cox" and cannot be changed.

Prediction types

This learner returns three prediction types:

  1. lp: a vector containing the linear predictors (relative risk scores), where each score corresponds to a specific test observation. Calculated using glmnet::predict.cv.glmnet().

  2. crank: same as lp.

  3. distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated using glmnet::survfit.cv.glmnet(). Parameters stype and ctype relate to how lp predictions are transformed into survival predictions and are described in survival::survfit.coxph(). By default the Breslow estimator is used for computing the baseline hazard.

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.cv_glmnet")

Meta Information

  • Task type: “surv”

  • Predict Types: “crank”, “distr”, “lp”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, mlr3proba, mlr3extralearners, glmnet

Parameters

IdTypeDefaultLevelsRange
alignmentcharacterlambdalambda, fraction-
alphanumeric1\([0, 1]\)
bignumeric9.9e+35\((-\infty, \infty)\)
devmaxnumeric0.999\([0, 1]\)
dfmaxinteger-\([0, \infty)\)
epsnumeric1e-06\([0, 1]\)
epsnrnumeric1e-08\([0, 1]\)
excludeuntyped--
exmxnumeric250\((-\infty, \infty)\)
fdevnumeric1e-05\([0, 1]\)
foldiduntypedNULL-
gammauntyped--
groupedlogicalTRUETRUE, FALSE-
interceptlogicalTRUETRUE, FALSE-
keeplogicalFALSETRUE, FALSE-
lambdauntyped--
lambda.min.rationumeric-\([0, 1]\)
lower.limitsuntyped-Inf-
maxitinteger100000\([1, \infty)\)
mnlaminteger5\([1, \infty)\)
mxitinteger100\([1, \infty)\)
mxitnrinteger25\([1, \infty)\)
nfoldsinteger10\([3, \infty)\)
nlambdainteger100\([1, \infty)\)
offsetuntypedNULL-
newoffsetuntyped--
parallellogicalFALSETRUE, FALSE-
penalty.factoruntyped--
pmaxinteger-\([0, \infty)\)
pminnumeric1e-09\([0, 1]\)
precnumeric1e-10\((-\infty, \infty)\)
predict.gammanumericgamma.1se\((-\infty, \infty)\)
relaxlogicalFALSETRUE, FALSE-
snumericlambda.1se\([0, \infty)\)
standardizelogicalTRUETRUE, FALSE-
standardize.responselogicalFALSETRUE, FALSE-
threshnumeric1e-07\([0, \infty)\)
trace.itinteger0\([0, 1]\)
type.gaussiancharacter-covariance, naive-
type.logisticcharacterNewtonNewton, modified.Newton-
type.measurecharacterdeviancedeviance, C-
type.multinomialcharacterungroupedungrouped, grouped-
upper.limitsuntypedInf-
stypeinteger2\([1, 2]\)
ctypeinteger-\([1, 2]\)

References

Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1–22. doi:10.18637/jss.v033.i01 .

See also

Author

be-marc

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvCVGlmnet

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method selected_features()

Returns the set of selected features as reported by glmnet::predict.glmnet() with type set to "nonzero".

Usage

LearnerSurvCVGlmnet$selected_features(lambda = NULL)

Arguments

lambda

(numeric(1))
Custom lambda, defaults to the active lambda depending on parameter set.

Returns

(character()) of feature names.


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerSurvCVGlmnet$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = mlr3::lrn("surv.cv_glmnet")
print(learner)
#> <LearnerSurvCVGlmnet:surv.cv_glmnet>: Regularized Generalized Linear Model
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3proba, mlr3extralearners, glmnet
#> * Predict Types:  [crank], distr, lp
#> * Feature Types: logical, integer, numeric
#> * Properties: selected_features, weights

# Define a Task
task = mlr3::tsk("grace")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> $model
#> 
#> Call:  (if (cv) glmnet::cv.glmnet else glmnet::glmnet)(x = data, y = target,      family = "cox") 
#> 
#> Measure: Partial Likelihood Deviance 
#> 
#>      Lambda Index Measure     SE Nonzero
#> min 0.00328    44   8.525 0.1518       6
#> 1se 0.03682    18   8.674 0.1484       6
#> 
#> $x
#>        age los revasc revascdays stchange sysbp
#>   [1,]  28   9      0        180        1   107
#>   [2,]  32   5      1          0        1   121
#>   [3,]  35   5      1          2        0   172
#>   [4,]  35   2      0        180        0   121
#>   [5,]  35   2      1          1        1   112
#>   [6,]  37   9      0        180        1   151
#>   [7,]  38  13      1          0        1   161
#>   [8,]  38   2      0        115        0   150
#>   [9,]  35   0      0        180        1   119
#>  [10,]  38  12      1          8        1   120
#>  [11,]  33   6      1          1        1   115
#>  [12,]  38  12      1         11        1    92
#>  [13,]  40  12      1          9        0   153
#>  [14,]  42   3      1          1        1   130
#>  [15,]  37   1      1          0        1   146
#>  [16,]  42   2      0        180        1   100
#>  [17,]  38   5      1          3        0   125
#>  [18,]  40  11      1         10        1   120
#>  [19,]  43   3      1          0        1   100
#>  [20,]  41   2      1          1        0   166
#>  [21,]  40   1      1          0        1   145
#>  [22,]  43   4      1          0        1   130
#>  [23,]  42   4      0        180        0   162
#>  [24,]  42  15      1         13        1   125
#>  [25,]  40   3      1          1        0   170
#>  [26,]  42  12      1         10        1   170
#>  [27,]  43   2      1          1        1   116
#>  [28,]  42   2      0        180        1   124
#>  [29,]  44   5      1          1        0   170
#>  [30,]  41  10      1          8        0   150
#>  [31,]  41  13      1          1        0   140
#>  [32,]  45   9      1          7        0   110
#>  [33,]  45   6      0        180        1   170
#>  [34,]  41   5      1          4        1   141
#>  [35,]  46  15      0        180        0   120
#>  [36,]  46   2      1          1        0   126
#>  [37,]  47   4      1          3        0   118
#>  [38,]  48  15      0        180        1   160
#>  [39,]  44   3      1          0        1   180
#>  [40,]  46   7      1          2        0   166
#>  [41,]  43  29      0        180        1   180
#>  [42,]  45   4      1          0        0   124
#>  [43,]  43  10      0        180        0   185
#>  [44,]  46  13      1         10        0   100
#>  [45,]  47   4      1          3        1   160
#>  [46,]  43   3      1          0        1   124
#>  [47,]  46   2      1          1        1   122
#>  [48,]  46   6      1          0        1   100
#>  [49,]  47   2      0        180        0   108
#>  [50,]  44   9      1          8        1   135
#>  [51,]  46   5      1          3        0   130
#>  [52,]  46   4      0        180        1   121
#>  [53,]  44   2      0        180        0   142
#>  [54,]  45   9      1          0        1   145
#>  [55,]  48   3      0        180        0   154
#>  [56,]  48  12      1         11        0   200
#>  [57,]  47   5      1          3        1   130
#>  [58,]  47   9      1          6        0   170
#>  [59,]  47  10      0         10        1   140
#>  [60,]  50   1      1          0        1   129
#>  [61,]  50   6      1          2        1   140
#>  [62,]  49   7      1          7        1   110
#>  [63,]  46   3      1          1        1   140
#>  [64,]  46   9      1          9        1   122
#>  [65,]  50   7      0        180        1   110
#>  [66,]  49   2      0          2        0   105
#>  [67,]  51   1      0          1        1   145
#>  [68,]  49  15      1         11        1   160
#>  [69,]  47   2      0        180        0   150
#>  [70,]  46   6      1          0        1   156
#>  [71,]  52   2      0        180        1   170
#>  [72,]  50   4      0          4        1   100
#>  [73,]  51   3      1          2        0   113
#>  [74,]  50   1      1          0        0   150
#>  [75,]  50   9      0        180        0   130
#>  [76,]  49   7      1          4        1    90
#>  [77,]  47   6      0        180        1   162
#>  [78,]  51   8      0        180        1   140
#>  [79,]  52   2      0        180        0   155
#>  [80,]  46   3      0        180        1   120
#>  [81,]  50   4      1          1        0   150
#>  [82,]  48   7      1          0        1   110
#>  [83,]  53   8      0         36        1   160
#>  [84,]  48  17      1         10        0   111
#>  [85,]  52   4      1          4        0   152
#>  [86,]  54  17      1         12        1   102
#>  [87,]  53   7      1          0        0   199
#>  [88,]  54   6      1          3        0   129
#>  [89,]  51   3      1          1        0   140
#>  [90,]  50   2      0          5        1   106
#>  [91,]  50  10      1          6        0   122
#>  [92,]  50  14      1         13        0   170
#>  [93,]  53   8      1          7        0   160
#>  [94,]  48   3      1          2        0   150
#>  [95,]  51  25      1          1        0   202
#>  [96,]  49   5      1          2        1   150
#>  [97,]  53   4      0          4        0   140
#>  [98,]  52  14      1          7        1   200
#>  [99,]  48   6      0        180        0   160
#> [100,]  51  13      0         99        1   160
#> [101,]  54  23      1         10        0   131
#> [102,]  52   7      1          2        0   154
#> [103,]  54   9      1          1        0   130
#> [104,]  52   4      0        180        1   180
#> [105,]  50   3      0        174        1   153
#> [106,]  55  28      1         13        1   160
#> [107,]  49   6      1          0        1   130
#> [108,]  50   7      1          1        0   156
#> [109,]  53   9      0          9        1    95
#> [110,]  56   4      1          1        1   130
#> [111,]  55   1      0        180        0   127
#> [112,]  55   2      0          2        0   145
#> [113,]  54   1      0        180        0   162
#> [114,]  54   7      1          0        1   100
#> [115,]  56   3      0        180        1   193
#> [116,]  56   2      0        180        0   132
#> [117,]  55   5      1          4        1   120
#> [118,]  52   8      0        180        0   119
#> [119,]  54   3      0        180        1   180
#> [120,]  52  16      0         16        0   152
#> [121,]  53  10      1          9        0   172
#> [122,]  52  16      1         14        0   170
#> [123,]  53  15      0         15        1    90
#> [124,]  55   6      0        180        1   100
#> [125,]  55   6      1          5        1   138
#> [126,]  55   2      0        134        1   140
#> [127,]  54   3      0        180        0   128
#> [128,]  56   3      0          8        1   139
#> [129,]  57   3      0          3        0   120
#> [130,]  54   7      1          2        0   129
#> [131,]  52   9      1          3        0   170
#> [132,]  57   5      1          3        1   138
#> [133,]  57   1      0        180        1   156
#> [134,]  57   1      0          1        1   100
#> [135,]  56   4      1          0        1   140
#> [136,]  52   2      0        180        0   140
#> [137,]  55  11      1          7        0   104
#> [138,]  56  14      1         11        0   130
#> [139,]  53   3      1          0        1   200
#> [140,]  57  10      0        180        1   170
#> [141,]  58   8      0          8        1   130
#> [142,]  55   3      1          1        1   156
#> [143,]  57   0      0          0        1   150
#> [144,]  53  21      1         13        1   130
#> [145,]  58   6      1          0        1    90
#> [146,]  53  15      1         10        1   130
#> [147,]  54  17      1          8        1   227
#> [148,]  55  13      0        166        1   140
#> [149,]  56   5      0          5        1   150
#> [150,]  54  23      1          8        0   120
#> [151,]  57   4      1          2        1   185
#> [152,]  53   4      0        147        1   145
#> [153,]  55   3      1          2        0   140
#> [154,]  55   5      0          5        1   131
#> [155,]  54   7      1          0        1   141
#> [156,]  56   4      0          4        0   164
#> [157,]  58   9      1          0        1   180
#> [158,]  58   1      1          1        1   200
#> [159,]  55   5      1          0        0   140
#> [160,]  56   7      1          5        1   120
#> [161,]  59   9      1          1        1   125
#> [162,]  57   1      0        180        0   148
#> [163,]  60  11      1          9        0   106
#> [164,]  59   3      0        180        0   120
#> [165,]  57   2      0          2        1   120
#> [166,]  60   5      1          1        0   138
#> [167,]  57   5      0        180        1   130
#> [168,]  55   5      1          0        1   160
#> [169,]  57  10      1          9        0   103
#> [170,]  58  26      1          0        1   189
#> [171,]  61   9      0          9        1   160
#> [172,]  58   4      1          3        0   120
#> [173,]  60   0      1          0        1    80
#> [174,]  59   2      1          1        0   140
#> [175,]  58   8      0        161        1   140
#> [176,]  58  14      1          6        0   190
#> [177,]  61   4      1          3        0   151
#> [178,]  61   9      1          8        0   150
#> [179,]  61   3      1          2        1   102
#> [180,]  57   2      1          0        1   116
#> [181,]  57   4      1          3        0   138
#> [182,]  57  11      0        180        1   150
#> [183,]  57   3      1          2        0   120
#> [184,]  58  19      1         13        1   140
#> [185,]  59   9      1          0        1    80
#> [186,]  55   4      1          3        1   160
#> [187,]  55   9      1          7        1   135
#> [188,]  61   4      1          0        1   115
#> [189,]  61  13      1         12        1   130
#> [190,]  59  11      1          8        1   190
#> [191,]  57   1      0          1        0   126
#> [192,]  57  15      1         13        1   110
#> [193,]  58   5      1          1        1   135
#> [194,]  59  10      0        180        0   160
#> [195,]  61   8      0         77        0   120
#> [196,]  58   8      1          5        0   152
#> [197,]  62  10      1          0        1   153
#> [198,]  57   3      1          0        0   100
#> [199,]  61  18      0        170        0   140
#> [200,]  57   7      0        169        0   180
#> [201,]  61   7      0          7        1   150
#> [202,]  59  13      1          2        0   198
#> [203,]  57  12      1          9        1   120
#> [204,]  62   4      1          0        0   160
#> [205,]  60  17      1          8        1   140
#> [206,]  58   3      1          0        1   146
#> [207,]  58   2      0         30        0   202
#> [208,]  59   1      0        180        0   155
#> [209,]  59  16      1          9        1   133
#> [210,]  63   6      0         28        1   120
#> [211,]  61  13      0         13        0   120
#> [212,]  57  18      1          9        1    93
#> [213,]  62   1      1          0        1   172
#> [214,]  58   7      0        180        1   150
#> [215,]  63   1      0        180        1   130
#> [216,]  62   3      0        180        1   105
#> [217,]  63  15      1         10        1   126
#> [218,]  64   4      0        180        0   130
#> [219,]  60  18      1         13        0   132
#> [220,]  58   9      1          9        0   110
#> [221,]  62   7      0          7        0   150
#> [222,]  59   1      0         22        1   162
#> [223,]  58   2      0        180        0   127
#> [224,]  59   4      0        180        0   196
#> [225,]  60   7      1          5        1   141
#> [226,]  59   5      1          1        0   148
#> [227,]  60   7      1          1        1    90
#> [228,]  65  13      0        180        1   100
#> [229,]  63   1      0          1        0   130
#> [230,]  62   6      0        180        0   170
#> [231,]  61  15      1         13        0   170
#> [232,]  59   4      0          4        0   149
#> [233,]  64  10      1          9        0   160
#> [234,]  62   6      0          6        0   120
#> [235,]  63  12      1         10        0   200
#> [236,]  59  10      0        180        1   130
#> [237,]  60   8      0         17        1   130
#> [238,]  64  12      1         11        0   160
#> [239,]  64   6      1          0        1   140
#> [240,]  63  10      1          0        1   148
#> [241,]  63  14      1          9        0   123
#> [242,]  65  36      1         11        0   140
#> [243,]  63   4      1          3        0   162
#> [244,]  66   3      1          1        0   127
#> [245,]  64  32      1          9        1   160
#> [246,]  63  12      1          9        0   114
#> [247,]  63   7      0        180        0   120
#> [248,]  66   5      1          0        1   110
#> [249,]  65   8      1          0        0   168
#> [250,]  65  10      1          8        1   120
#> [251,]  60   6      0        180        0   130
#> [252,]  61  12      1         11        0   154
#> [253,]  64   9      0        180        0   150
#> [254,]  61   4      0        180        1   113
#> [255,]  65   3      0        180        1   190
#> [256,]  64   7      0        180        1   120
#> [257,]  66   6      1          1        1   130
#> [258,]  62   3      1          1        1   199
#> [259,]  65   6      0          9        0   112
#> [260,]  65   3      1          0        1    80
#> [261,]  63   5      1          4        0   170
#> [262,]  63   2      1          1        0   180
#> [263,]  62  13      1         11        0   180
#> [264,]  67  11      0         11        1   100
#> [265,]  66  16      1         11        1   169
#> [266,]  61  14      1          5        0   140
#> [267,]  61  15      1         10        0   130
#> [268,]  63   3      1          2        0   120
#> [269,]  63   2      1          0        0   140
#> [270,]  65   8      1          0        1   140
#> [271,]  65  15      1         11        1   160
#> [272,]  64  13      1         12        1   150
#> [273,]  64   6      1          0        1   125
#> [274,]  66   7      1          0        1   115
#> [275,]  66  13      1          0        0   118
#> [276,]  64  14      1         13        1   150
#> [277,]  65   3      0          3        0   105
#> [278,]  64   0      0          0        1   148
#> [279,]  67   4      1          3        0   130
#> [280,]  66   6      1          0        1   140
#> [281,]  64  10      1          9        1   110
#> [282,]  63   7      1          0        0   162
#> [283,]  67   8      1          1        1   130
#> [284,]  68   5      0          5        1    90
#> [285,]  63  10      0         16        1   160
#> [286,]  64   1      0          1        1   120
#> [287,]  68  18      0        180        1   260
#> [288,]  63   8      1          1        1   162
#> [289,]  65  18      1          3        0   120
#> [290,]  63   1      1          0        1   155
#> [291,]  67  11      0         11        0   150
#> [292,]  68  11      0        180        0   160
#> [293,]  66  12      1         10        1   150
#> [294,]  66  11      1          0        0   100
#> [295,]  69  12      0         15        1   140
#> [296,]  69  21      1         10        0   180
#> [297,]  69   6      0        180        1   100
#> [298,]  66   9      1          8        0   130
#> [299,]  63   8      0        180        1   120
#> [300,]  68  14      1         13        1   140
#> [301,]  65   8      1          0        1    90
#> [302,]  66   3      0          3        1   138
#> [303,]  69   1      1          0        0   170
#> [304,]  65   1      1          0        0   133
#> [305,]  67   7      1          4        1   130
#> [306,]  63   2      1          0        0    99
#> [307,]  67   2      0        180        0   184
#> [308,]  65   6      0          6        0    80
#> [309,]  65  10      1          1        1   148
#> [310,]  66  19      1         12        1   150
#> [311,]  67  12      1         12        0   160
#> [312,]  65   4      1          1        0   130
#> [313,]  64   4      0        179        0   160
#> [314,]  66   4      0        180        1   130
#> [315,]  70  15      1         12        1   132
#> [316,]  64  11      0         11        0   125
#> [317,]  64   4      0        180        1   140
#> [318,]  64   0      1          0        1   118
#> [319,]  66   7      1          5        1   131
#> [320,]  69   4      1          3        1   150
#> [321,]  69  17      1         10        0   140
#> [322,]  64  21      0         21        1   155
#> [323,]  66   6      0        180        0   140
#> [324,]  65   1      0          1        1   120
#> [325,]  68   4      0          4        1   190
#> [326,]  71   3      0          5        0   112
#> [327,]  70   7      1          0        1   190
#> [328,]  71  20      1          0        1   160
#> [329,]  67   2      0        180        0   128
#> [330,]  70   4      1          0        1   180
#> [331,]  69   8      0        180        1   153
#> [332,]  70  14      0        171        0   166
#> [333,]  67  10      1          9        0   200
#> [334,]  68  18      1         14        1   170
#> [335,]  69   0      0          0        1   148
#> [336,]  65   2      0        180        0   130
#> [337,]  68   7      1          0        1   150
#> [338,]  67  14      1         13        0   130
#> [339,]  71   7      0          7        0   230
#> [340,]  66   2      0          2        1   228
#> [341,]  69   5      0          5        1   142
#> [342,]  70  22      1         13        0   103
#> [343,]  67   1      0         36        1   104
#> [344,]  67   5      0          5        0   130
#> [345,]  68   6      0        180        0   145
#> [346,]  69   8      1          5        1   195
#> [347,]  69   6      1          4        1   174
#> [348,]  72   3      1          0        1   132
#> [349,]  69   8      1          7        1   108
#> [350,]  67   3      0        180        0   110
#> [351,]  66   2      1          1        0   123
#> [352,]  69  19      0        180        0   130
#> [353,]  67  14      0        172        1   140
#> [354,]  66   2      0        180        0   130
#> [355,]  67   7      1          4        0   122
#> [356,]  69   4      1          3        0   132
#> [357,]  68   2      0          7        1   130
#> [358,]  69   8      1          2        0   121
#> [359,]  70   3      0        123        0   130
#> [360,]  70   9      0        180        1   142
#> [361,]  72   5      1          4        0   170
#> [362,]  68   3      0         19        0   135
#> [363,]  67  12      1          8        0   120
#> [364,]  69   1      0          1        1   110
#> [365,]  69   5      0         76        0   120
#> [366,]  67   8      1          0        1   130
#> [367,]  72  13      1         11        1   195
#> [368,]  68  10      1          8        1   160
#> [369,]  66  24      1         13        0   130
#> [370,]  70  35      1          0        1   105
#> [371,]  72  30      1          0        1   145
#> [372,]  70   7      0          7        0   102
#> [373,]  68   7      1          2        0   135
#> [374,]  73  20      1          0        1   170
#> [375,]  71   6      0          9        0   120
#> [376,]  70  11      0        180        1   210
#> [377,]  72  19      1          8        0   120
#> [378,]  67   9      0        180        0   158
#> [379,]  73  13      0        152        1   130
#> [380,]  70   5      0        180        0   150
#> [381,]  72   2      0          2        1   100
#> [382,]  67   4      1          1        0   134
#> [383,]  72   6      1          5        0   115
#> [384,]  71   1      0        173        1   188
#> [385,]  68  23      0        180        1   220
#> [386,]  69   3      0        180        0   220
#> [387,]  71   3      1          2        0   150
#> [388,]  71   5      0        180        0   191
#> [389,]  73   6      0        180        1   117
#> [390,]  68   7      0        180        1   130
#> [391,]  72  16      1          1        1   130
#> [392,]  70   4      0        180        0   180
#> [393,]  69   1      1          0        0   155
#> [394,]  72   8      1          1        1   150
#> [395,]  71   2      1          0        1   180
#> [396,]  73   7      0          7        1   140
#> [397,]  70   3      0          3        1   159
#> [398,]  70  13      1          9        0   100
#> [399,]  72   6      0        180        1   130
#> [400,]  69   2      1          0        1   110
#> [401,]  71   3      1          1        0   150
#> [402,]  71  15      1         11        0   165
#> [403,]  68   9      0        180        1   120
#> [404,]  73   3      1          0        1   136
#> [405,]  71  17      1         11        0   160
#> [406,]  71   8      1          7        0   149
#> [407,]  71   3      1          2        1   190
#> [408,]  73  10      1          8        0   106
#> [409,]  69  12      1          1        1   149
#> [410,]  70  26      1         11        1   120
#> [411,]  73   4      0         58        1   160
#> [412,]  72   5      1          3        1   160
#> [413,]  70   3      0        180        1   154
#> [414,]  72  15      1          0        1   150
#> [415,]  71   7      1          2        0   143
#> [416,]  72   8      1          0        1   140
#> [417,]  73  17      1         11        0   140
#> [418,]  69   2      1          1        1    80
#> [419,]  70   4      1          0        1   140
#> [420,]  69   7      0        180        1   144
#> [421,]  71  10      1          9        1   120
#> [422,]  73  10      1          9        1   146
#> [423,]  73  10      1         10        1   120
#> [424,]  74  15      1          9        1   179
#> [425,]  71   2      0         10        1   112
#> [426,]  73   1      0          1        1    80
#> [427,]  75  13      1          1        1   130
#> [428,]  71  11      1          8        0   110
#> [429,]  71   4      0          4        0   134
#> [430,]  72  15      1         12        1   120
#> [431,]  70   7      1          4        0   184
#> [432,]  72   7      0         57        1   145
#> [433,]  73  10      0        180        0   162
#> [434,]  73   5      1          3        1   112
#> [435,]  76  25      1         12        1   170
#> [436,]  72   2      0        180        0   120
#> [437,]  71   3      1          0        0   144
#> [438,]  71  32      1         12        1   107
#> [439,]  72   5      0        180        0   154
#> [440,]  72   3      0        180        0   160
#> [441,]  76   5      0          5        1   130
#> [442,]  77  11      0         11        1   150
#> [443,]  75   3      1          1        0   180
#> [444,]  72   7      1          2        0   142
#> [445,]  73  15      0         15        1   160
#> [446,]  71  16      0        180        0   140
#> [447,]  74   3      0          3        1   128
#> [448,]  76   1      0        180        0   114
#> [449,]  74   2      1          1        0   140
#> [450,]  76   8      1          0        1   141
#> [451,]  74  19      1          4        1   200
#> [452,]  74   2      0        180        0   190
#> [453,]  72   4      0         85        1   120
#> [454,]  76  17      1          0        1   200
#> [455,]  75   4      1          0        1   122
#> [456,]  75   7      0          7        0   190
#> [457,]  75   0      0          0        1   130
#> [458,]  73  13      1         11        0   195
#> [459,]  74   8      1          0        1   105
#> [460,]  76  13      1          8        1   148
#> [461,]  75   4      1          2        1   188
#> [462,]  74   6      0        180        0   160
#> [463,]  76   4      0          4        1   155
#> [464,]  75   1      0          1        1   125
#> [465,]  74   2      0        180        0   111
#> [466,]  73   1      0         52        1   105
#> [467,]  73   0      0        180        0   156
#> [468,]  72   5      0        180        0   120
#> [469,]  78  12      1         11        1   160
#> [470,]  76  44      1         10        0   105
#> [471,]  76   5      0        180        0   185
#> [472,]  74  10      1          0        1   135
#> [473,]  76   5      1          0        1   167
#> [474,]  74   8      1          8        1   170
#> [475,]  75   9      0        180        1   140
#> [476,]  73  33      1         12        1   175
#> [477,]  77   5      1          0        0   123
#> [478,]  73  10      1          9        0   146
#> [479,]  77  12      0        180        0   130
#> [480,]  76  12      1         11        1   120
#> [481,]  78   5      1          0        1   170
#> [482,]  74   6      0         79        1   140
#> [483,]  74   9      1          8        0   200
#> [484,]  75   6      0        180        0   150
#> [485,]  74   2      1          0        1   130
#> [486,]  78  18      0         18        1   144
#> [487,]  77   3      0        180        0   110
#> [488,]  76  29      0         47        0    90
#> [489,]  73   8      1          1        1   162
#> [490,]  73  11      1          2        1   110
#> [491,]  78   7      0          7        1   133
#> [492,]  78   8      1          6        1   110
#> [493,]  76  13      1          1        1   170
#> [494,]  78  32      1          9        1   198
#> [495,]  79   6      0        180        0   170
#> [496,]  80  10      1          6        1   147
#> [497,]  78   0      0        180        1   212
#> [498,]  75  12      1          1        1   120
#> [499,]  78  15      0        180        1   270
#> [500,]  80   8      0          8        1   120
#> [501,]  74  10      1          8        0   135
#> [502,]  76   1      0          1        1    83
#> [503,]  79   4      0         80        0   145
#> [504,]  78  12      1          9        0   150
#> [505,]  75   4      1          0        0   212
#> [506,]  78  10      0        180        1   130
#> [507,]  75  11      1          4        0   162
#> [508,]  75   3      0          3        0     0
#> [509,]  76   7      0         29        1   150
#> [510,]  77  24      0         24        1   160
#> [511,]  79   8      0         32        1   120
#> [512,]  80   9      0         23        1   128
#> [513,]  80   6      0          6        1   150
#> [514,]  78   6      1          0        1   240
#> [515,]  76   3      1          0        1   140
#> [516,]  78  11      1          1        1   140
#> [517,]  79  11      0        180        0   160
#> [518,]  79   2      1          0        1   121
#> [519,]  81   1      0          1        0   130
#> [520,]  78  11      1          8        1   118
#> [521,]  76   4      0          4        1   160
#> [522,]  79   4      0          4        1   125
#> [523,]  77   6      0          6        1   107
#> [524,]  75   2      1          1        1   204
#> [525,]  76   1      0          1        1   140
#> [526,]  81   1      0        180        0   120
#> [527,]  77   9      1          4        0   141
#> [528,]  82   5      0          8        1   120
#> [529,]  78   4      0         59        1   112
#> [530,]  80  17      1         12        0   100
#> [531,]  76   7      0        161        0   151
#> [532,]  79  10      0         10        1   120
#> [533,]  79  28      0        164        0   100
#> [534,]  80   9      0        118        1   186
#> [535,]  78  32      0        180        1   130
#> [536,]  79   1      0         37        1   140
#> [537,]  81   3      0        180        0   184
#> [538,]  77  13      1          0        1   190
#> [539,]  78  15      0         15        0   165
#> [540,]  80   5      1          1        1   108
#> [541,]  79   3      0          3        1   101
#> [542,]  78  26      1          5        0   194
#> [543,]  81   4      1          1        1   104
#> [544,]  78  20      1          0        1   109
#> [545,]  80   1      0          1        0   100
#> [546,]  77  10      1          8        1   130
#> [547,]  82   3      1          1        1   144
#> [548,]  77   5      0         85        0   188
#> [549,]  79   6      0          6        0   152
#> [550,]  78   2      0        180        0   148
#> [551,]  82   1      1          0        1    82
#> [552,]  79  10      0        180        1   150
#> [553,]  77   4      0        180        1    98
#> [554,]  81   1      0        108        0   129
#> [555,]  83   9      1          5        1   170
#> [556,]  82   5      0        180        0   110
#> [557,]  79   7      1          6        0   130
#> [558,]  81   5      0        177        0    41
#> [559,]  80  11      1          8        0   170
#> [560,]  78   9      1          4        1   120
#> [561,]  81  15      0        180        1   140
#> [562,]  81  20      1          9        0   170
#> [563,]  81  16      0         16        1   110
#> [564,]  80   6      1          0        1   150
#> [565,]  80  11      1          8        0   110
#> [566,]  81   8      0        180        0   146
#> [567,]  79   7      0        177        0   197
#> [568,]  85   4      0        180        0    90
#> [569,]  81   2      1          1        0   198
#> [570,]  80   3      1          1        1   230
#> [571,]  84   4      0          4        1    85
#> [572,]  81   1      0          1        1   150
#> [573,]  81   4      0         90        1   138
#> [574,]  85   3      1          2        1   160
#> [575,]  80  13      1          8        1   140
#> [576,]  80   2      1          0        1   130
#> [577,]  80   6      0         71        1   189
#> [578,]  82  19      0         19        0   120
#> [579,]  80  30      1         13        0   220
#> [580,]  79  14      1          0        0   110
#> [581,]  83   3      0        114        0    98
#> [582,]  82   0      0          2        1   100
#> [583,]  81   4      0          4        0   175
#> [584,]  84  15      1         13        1   110
#> [585,]  81   1      0          1        1   145
#> [586,]  81  12      0         12        1   163
#> [587,]  82  16      1          8        0   103
#> [588,]  82   5      1          0        1   146
#> [589,]  81   4      0          4        0   160
#> [590,]  83  12      1          2        1   170
#> [591,]  82  15      1          0        0   183
#> [592,]  80   2      0         88        0   135
#> [593,]  83   7      0        126        0   135
#> [594,]  86   8      0          8        1   132
#> [595,]  86   3      0          3        1   140
#> [596,]  84   3      0        180        1   120
#> [597,]  81  13      0        180        0   152
#> [598,]  85   3      0          3        1   118
#> [599,]  81   2      1          0        1   118
#> [600,]  81   4      0        180        0   160
#> [601,]  82   1      0        180        1   193
#> [602,]  83   4      0          4        0   130
#> [603,]  87   2      0          5        1   137
#> [604,]  82  14      1         11        1   103
#> [605,]  86   6      1          0        1   140
#> [606,]  84   3      1          2        0   125
#> [607,]  83  13      1         12        0   170
#> [608,]  84   7      1          2        0   148
#> [609,]  87   2      0        180        0   113
#> [610,]  84   9      0         92        1   110
#> [611,]  84   3      0        180        1   170
#> [612,]  86   4      0         38        1   122
#> [613,]  82   4      0          4        0   130
#> [614,]  86  13      0        177        0   163
#> [615,]  85   3      0          3        1   113
#> [616,]  86   6      0          6        1   117
#> [617,]  84  13      0         62        1   100
#> [618,]  86   6      1          1        0   112
#> [619,]  83   9      0         65        1   150
#> [620,]  86   9      1          7        1   142
#> [621,]  87   2      0        180        1   130
#> [622,]  88   3      0        115        0   110
#> [623,]  83   3      0          3        1   130
#> [624,]  87   8      0          8        1   157
#> [625,]  86  15      1          8        1   109
#> [626,]  88   4      0          4        0    86
#> [627,]  89   4      0          4        1   153
#> [628,]  89   5      0        119        1   140
#> [629,]  87   6      0        180        1   110
#> [630,]  87   1      0          1        0   170
#> [631,]  87  29      0         29        1    97
#> [632,]  87  15      1          9        1   138
#> [633,]  84   0      0        180        1   136
#> [634,]  89  10      0         46        1   170
#> [635,]  90  14      0         14        1   100
#> [636,]  88   1      0          1        0   135
#> [637,]  86   4      0        180        1   145
#> [638,]  91   8      0          8        0   100
#> [639,]  87   2      0        180        0   160
#> [640,]  87   6      1          0        0   125
#> [641,]  91  10      0        145        0   135
#> [642,]  86   3      1          0        1    80
#> [643,]  88   8      0         50        1   154
#> [644,]  90  11      1         10        1   186
#> [645,]  86  10      0        180        1   137
#> [646,]  91   1      0          1        1    74
#> [647,]  87  43      0        178        1   130
#> [648,]  87   5      0         36        1   150
#> [649,]  92   1      0          1        1   167
#> [650,]  91   3      0         33        1   137
#> [651,]  89  12      1          0        1   130
#> [652,]  89   2      0        168        0   118
#> [653,]  91   5      0        169        1   176
#> [654,]  92   7      0          7        1   110
#> [655,]  91   0      0          0        0     0
#> [656,]  89  14      0        180        1    84
#> [657,]  90  18      0        180        0   188
#> [658,]  91   4      1          0        1   120
#> [659,]  94   6      0         50        0    78
#> [660,]  93   8      0        179        1   110
#> [661,]  94   8      0          8        1   142
#> [662,]  92   4      0         76        1   149
#> [663,]  90  16      0         16        1   106
#> [664,]  90   3      0         67        0   162
#> [665,]  91   7      0          7        0   135
#> [666,]  92   5      0         69        0   139
#> [667,]  92   2      0          2        0   112
#> [668,]  93   4      0        180        1   135
#> [669,]  96   3      1          0        1   104
#> [670,]  96  15      1          0        1   140
#> 
#> $y
#>   [1] 180.0+   5.0+   5.0+ 180.0+   2.0+ 180.0+ 180.0+ 115.0  180.0+  12.0 
#>  [11] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+   5.0+ 180.0+   3.0  180.0+
#>  [21] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+   2.0+ 180.0+ 155.0+ 180.0+
#>  [31] 180.0+ 180.0+ 180.0+   5.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#>  [41] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 161.0+ 180.0+ 180.0+ 180.0+
#>  [51]   5.0+ 180.0+ 180.0+ 177.0+ 180.0+ 180.0+ 180.0+ 180.0+  10.0+ 172.0+
#>  [61] 180.0+   7.0  180.0+ 180.0+ 180.0+   2.0    1.0  179.0+ 180.0+ 180.0+
#>  [71] 180.0+   4.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#>  [81] 180.0+   7.0   36.0   88.0+   4.0+ 180.0+ 180.0+ 180.0+ 180.0+   5.0 
#>  [91] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+   4.0+  85.0  180.0+  99.0 
#> [101] 152.0+   7.0+ 180.0+ 180.0+ 174.0+  28.0    6.0+ 180.0+   9.0+ 180.0+
#> [111] 180.0+   2.0  180.0+   7.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+  16.0+
#> [121] 180.0+  16.0   15.0+ 180.0+ 180.0+ 134.0+ 180.0+   8.0    3.0+ 180.0+
#> [131] 180.0+ 140.0  180.0+   1.0  165.0  180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [141]   8.0+ 180.0+   0.5  180.0+ 180.0+ 180.0+ 171.0+ 166.0+   5.0+ 180.0+
#> [151]   4.0+ 147.0+ 180.0+   5.0+ 180.0+   4.0+   9.0+   1.0  180.0+ 180.0+
#> [161] 180.0+ 180.0+ 180.0+ 180.0+   2.0  180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [171]   9.0+ 180.0+   0.5  180.0+ 161.0+ 171.0+ 180.0+ 180.0+   3.0  180.0+
#> [181] 180.0+ 180.0+   3.0+  19.0    9.0+ 180.0+  24.0  180.0+ 180.0+ 180.0+
#> [191]   1.0+  15.0  180.0+ 180.0+  77.0    8.0+ 180.0+ 180.0+ 170.0  169.0 
#> [201]   7.0  180.0+ 180.0+ 180.0+ 180.0+   3.0+  30.0  180.0+ 180.0+  28.0 
#> [211]  13.0+  18.0    1.0  180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+   9.0 
#> [221]   7.0+  22.0  180.0+ 180.0+  84.0  180.0+ 180.0+ 180.0+   1.0  180.0+
#> [231] 180.0+   4.0+ 167.0    6.0+ 180.0+ 180.0+  17.0   12.0  180.0+ 180.0+
#> [241]  14.0+  36.0  180.0+   3.0+ 180.0+  12.0  180.0+ 180.0+ 180.0+ 180.0+
#> [251] 180.0+  12.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+   9.0    3.0 
#> [261] 180.0+ 180.0+ 180.0+  11.0+ 180.0+ 180.0+ 180.0+   3.0+   2.0+  15.0 
#> [271] 180.0+  13.0  180.0+ 179.0+ 166.0+  14.0+   3.0    0.5+ 180.0+ 180.0+
#> [281] 180.0+   7.0+   8.0    5.0   16.0    1.0  180.0+ 180.0+ 123.0+   1.0+
#> [291]  11.0+ 180.0+  80.0  180.0+  15.0  174.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [301]   8.0+   3.0  175.0  180.0+ 180.0+ 180.0+ 180.0+   6.0  180.0+  19.0+
#> [311]  12.0  180.0+ 179.0+ 180.0+ 180.0+  11.0+ 180.0+   0.5    7.0+ 152.0+
#> [321] 180.0+  21.0+ 180.0+   1.0    4.0    5.0    7.0+ 180.0+ 180.0+ 180.0+
#> [331] 180.0+ 171.0  174.0+ 180.0+   0.5  180.0+ 180.0+ 180.0+   7.0+   2.0 
#> [341]   5.0+ 180.0+  36.0    5.0+ 180.0+ 180.0+  97.0  180.0+   8.0+ 180.0+
#> [351]   2.0+ 180.0+ 172.0+ 180.0+   7.0  180.0+   7.0    8.0+ 123.0  180.0+
#> [361] 180.0+  19.0  180.0+   1.0   76.0  180.0+ 132.0   10.0+ 180.0+ 180.0+
#> [371] 162.0    7.0+   7.0+ 124.0    9.0  180.0+ 180.0+ 180.0+ 152.0  180.0+
#> [381]   2.0   76.0  180.0+ 173.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [391]  16.0+ 180.0+ 180.0+ 180.0+ 180.0+   7.0+   3.0+  13.0+ 180.0+   2.0 
#> [401]   3.0+ 180.0+ 180.0+ 180.0+ 180.0+   8.0    3.0   87.0   12.0  180.0+
#> [411]  58.0  180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+   2.0  180.0+ 180.0+
#> [421] 179.0+ 180.0+  15.0  180.0+  10.0    1.0   13.0  180.0+   4.0+ 180.0+
#> [431] 104.0+  57.0  180.0+   5.0  180.0+ 180.0+ 180.0+ 177.0+ 180.0+ 180.0+
#> [441]   5.0   11.0+ 180.0+   7.0   15.0+ 180.0+   3.0  180.0+ 180.0+ 180.0+
#> [451] 180.0+ 180.0+  85.0   17.0+   4.0    7.0    0.5  180.0+ 180.0+ 180.0+
#> [461]  46.0  180.0+   4.0    1.0  180.0+  52.0  180.0+ 180.0+  12.0  180.0+
#> [471] 180.0+ 180.0+ 180.0+   8.0  180.0+  33.0    5.0  180.0+ 180.0+  12.0 
#> [481] 180.0+  79.0  168.0+ 180.0+ 176.0+  18.0  180.0+  47.0  180.0+  11.0 
#> [491]   7.0    8.0+ 180.0+  32.0  180.0+  10.0  180.0+  12.0  180.0+   8.0 
#> [501] 180.0+   1.0   80.0  180.0+   4.0+ 180.0+ 152.0+   3.0   29.0   24.0 
#> [511]  32.0   23.0    6.0  180.0+   3.0+ 180.0+ 180.0+ 180.0+   1.0   11.0 
#> [521]   4.0    4.0    6.0    2.0+   1.0  180.0+  71.0    8.0   59.0   17.0 
#> [531] 161.0   10.0+ 164.0  118.0  180.0+  37.0  180.0+  22.0   15.0+   5.0+
#> [541]   3.0  171.0+  71.0   20.0+   1.0   10.0  180.0+  85.0    6.0+ 180.0+
#> [551]   1.0  180.0+ 180.0+ 108.0    9.0+ 180.0+ 180.0+ 177.0+ 169.0  180.0+
#> [561] 180.0+  20.0   16.0  180.0+ 180.0+ 180.0+ 177.0+ 180.0+ 180.0+   3.0+
#> [571]   4.0    1.0   90.0  180.0+ 180.0+ 180.0+  71.0   19.0   30.0  180.0+
#> [581] 114.0    2.0    4.0+ 180.0+   1.0   12.0   16.0+   5.0+   4.0+  77.0 
#> [591]  83.0   88.0  126.0    8.0    3.0  180.0+ 180.0+   3.0+ 180.0+ 180.0+
#> [601] 180.0+   4.0+   5.0  174.0    6.0  180.0+  13.0  180.0+ 180.0+  92.0 
#> [611] 180.0+  38.0    4.0  177.0    3.0+   6.0+  62.0    6.0+  65.0   11.0 
#> [621] 180.0+ 115.0    3.0+   8.0+ 180.0+   4.0    4.0  119.0  180.0+   1.0+
#> [631]  29.0  180.0+ 180.0+  46.0   14.0    1.0+ 180.0+   8.0  180.0+  25.0 
#> [641] 145.0    3.0   50.0   11.0  180.0+   1.0  178.0+  36.0    1.0   33.0 
#> [651] 180.0+ 168.0  169.0    7.0    0.5  180.0+ 180.0+   4.0   50.0  179.0+
#> [661]   8.0+  76.0   16.0   67.0    7.0+  69.0    2.0  180.0+   3.0   15.0+
#> 
#> $weights
#> NULL
#> 


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> surv.cindex 
#>   0.8444645