Cross-Validated GLM with Elastic Net Regularization Survival Learner
Source:R/learner_glmnet_surv_cv_glmnet.R
mlr_learners_surv.cv_glmnet.RdGeneralized linear models with elastic net regularization.
Calls glmnet::cv.glmnet() from package glmnet.
Prediction types
This learner returns three prediction types:
lp: a vector containing the linear predictors (relative risk scores), where each score corresponds to a specific test observation. Calculated usingglmnet::predict.cv.glmnet().crank: same aslp.distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated usingglmnet::survfit.cv.glmnet(). Parametersstypeandctyperelate to howlppredictions are transformed into survival predictions and are described insurvival::survfit.coxph(). By default the Breslow estimator is used for computing the baseline hazard.
Meta Information
Task type: “surv”
Predict Types: “crank”, “distr”, “lp”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, mlr3proba, mlr3extralearners, glmnet
Parameters
| Id | Type | Default | Levels | Range |
| alignment | character | lambda | lambda, fraction | - |
| alpha | numeric | 1 | \([0, 1]\) | |
| big | numeric | 9.9e+35 | \((-\infty, \infty)\) | |
| devmax | numeric | 0.999 | \([0, 1]\) | |
| dfmax | integer | - | \([0, \infty)\) | |
| eps | numeric | 1e-06 | \([0, 1]\) | |
| epsnr | numeric | 1e-08 | \([0, 1]\) | |
| exclude | untyped | - | - | |
| exmx | numeric | 250 | \((-\infty, \infty)\) | |
| fdev | numeric | 1e-05 | \([0, 1]\) | |
| foldid | untyped | NULL | - | |
| gamma | untyped | - | - | |
| grouped | logical | TRUE | TRUE, FALSE | - |
| intercept | logical | TRUE | TRUE, FALSE | - |
| keep | logical | FALSE | TRUE, FALSE | - |
| lambda | untyped | - | - | |
| lambda.min.ratio | numeric | - | \([0, 1]\) | |
| lower.limits | untyped | -Inf | - | |
| maxit | integer | 100000 | \([1, \infty)\) | |
| mnlam | integer | 5 | \([1, \infty)\) | |
| mxit | integer | 100 | \([1, \infty)\) | |
| mxitnr | integer | 25 | \([1, \infty)\) | |
| nfolds | integer | 10 | \([3, \infty)\) | |
| nlambda | integer | 100 | \([1, \infty)\) | |
| use_pred_offset | logical | TRUE | TRUE, FALSE | - |
| parallel | logical | FALSE | TRUE, FALSE | - |
| penalty.factor | untyped | - | - | |
| pmax | integer | - | \([0, \infty)\) | |
| pmin | numeric | 1e-09 | \([0, 1]\) | |
| prec | numeric | 1e-10 | \((-\infty, \infty)\) | |
| predict.gamma | numeric | gamma.1se | \((-\infty, \infty)\) | |
| relax | logical | FALSE | TRUE, FALSE | - |
| s | numeric | lambda.1se | \([0, \infty)\) | |
| standardize | logical | TRUE | TRUE, FALSE | - |
| standardize.response | logical | FALSE | TRUE, FALSE | - |
| thresh | numeric | 1e-07 | \([0, \infty)\) | |
| trace.it | integer | 0 | \([0, 1]\) | |
| type.gaussian | character | - | covariance, naive | - |
| type.logistic | character | Newton | Newton, modified.Newton | - |
| type.measure | character | deviance | deviance, C | - |
| type.multinomial | character | ungrouped | ungrouped, grouped | - |
| upper.limits | untyped | Inf | - | |
| stype | integer | 2 | \([1, 2]\) | |
| ctype | integer | - | \([1, 2]\) |
Offset
If a Task contains a column with the offset role, it is automatically
incorporated during training via the offset argument in glmnet::glmnet().
During prediction, the offset column from the test set is used only if
use_pred_offset = TRUE (default), passed via the newoffset argument in glmnet::predict.coxnet().
Otherwise, if the user sets use_pred_offset = FALSE, a zero offset is applied,
effectively disabling the offset adjustment during prediction.
References
Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1–22. doi:10.18637/jss.v033.i01 .
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvCVGlmnet
Methods
Method selected_features()
Returns the set of selected features as reported by glmnet::predict.glmnet()
with type set to "nonzero".
Arguments
lambda(
numeric(1))
Customlambda, defaults to the active lambda depending on parameter set.
Returns
(character()) of feature names.
Examples
# Define the Learner
learner = lrn("surv.cv_glmnet")
print(learner)
#>
#> ── <LearnerSurvCVGlmnet> (surv.cv_glmnet): Regularized Generalized Linear Model
#> • Model: -
#> • Parameters: use_pred_offset=TRUE
#> • Packages: mlr3, mlr3proba, mlr3extralearners, and glmnet
#> • Predict Types: [crank], distr, and lp
#> • Feature Types: logical, integer, and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: offset, selected_features, and weights
#> • Other settings: use_weights = 'use'
# Define a Task
task = tsk("grace")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> $model
#>
#> Call: (if (cv) glmnet::cv.glmnet else glmnet::glmnet)(x = data, y = target, family = "cox")
#>
#> Measure: Partial Likelihood Deviance
#>
#> Lambda Index Measure SE Nonzero
#> min 0.00340 43 2.771 0.2013 6
#> 1se 0.08029 9 2.951 0.1941 3
#>
#> $x
#> age los revasc revascdays stchange sysbp
#> [1,] 28 9 0 180 1 107
#> [2,] 33 2 0 2 0 150
#> [3,] 34 5 0 5 0 120
#> [4,] 35 2 1 1 1 112
#> [5,] 37 9 0 180 1 151
#> [6,] 38 2 0 115 0 150
#> [7,] 35 0 0 180 1 119
#> [8,] 38 12 1 8 1 120
#> [9,] 36 5 1 0 1 115
#> [10,] 33 6 1 1 1 115
#> [11,] 38 16 1 10 0 160
#> [12,] 42 3 1 1 1 130
#> [13,] 40 2 1 1 1 148
#> [14,] 42 2 0 2 0 140
#> [15,] 40 11 1 10 1 120
#> [16,] 42 2 0 180 0 100
#> [17,] 43 3 1 0 1 100
#> [18,] 40 1 1 0 1 145
#> [19,] 43 4 1 0 1 130
#> [20,] 42 4 0 180 0 162
#> [21,] 42 15 1 13 1 125
#> [22,] 42 12 1 10 1 170
#> [23,] 43 2 1 1 1 116
#> [24,] 42 2 0 180 1 124
#> [25,] 45 3 0 180 1 154
#> [26,] 41 10 1 8 0 150
#> [27,] 44 3 0 180 0 141
#> [28,] 45 9 1 7 0 110
#> [29,] 45 6 0 180 1 170
#> [30,] 44 2 1 1 1 150
#> [31,] 43 2 0 180 1 140
#> [32,] 47 4 1 3 0 118
#> [33,] 48 15 0 180 1 160
#> [34,] 44 3 1 0 1 180
#> [35,] 46 7 1 2 0 166
#> [36,] 43 10 0 180 0 185
#> [37,] 47 6 1 0 1 116
#> [38,] 46 13 1 10 0 100
#> [39,] 44 0 1 0 1 96
#> [40,] 43 3 1 0 1 124
#> [41,] 45 8 1 0 1 117
#> [42,] 49 5 0 73 1 136
#> [43,] 46 2 1 1 1 122
#> [44,] 44 4 1 0 1 114
#> [45,] 44 9 1 8 1 135
#> [46,] 45 5 0 180 1 190
#> [47,] 46 4 0 180 1 121
#> [48,] 45 9 1 0 1 145
#> [49,] 48 3 0 180 0 154
#> [50,] 47 9 1 6 0 170
#> [51,] 46 3 1 0 1 119
#> [52,] 49 4 0 180 0 117
#> [53,] 50 1 1 0 1 129
#> [54,] 48 2 1 0 0 184
#> [55,] 50 4 1 1 0 125
#> [56,] 49 7 1 7 1 110
#> [57,] 46 3 1 1 1 140
#> [58,] 46 9 1 9 1 122
#> [59,] 50 7 0 180 1 110
#> [60,] 49 2 0 2 0 105
#> [61,] 51 1 0 1 1 145
#> [62,] 47 2 0 180 0 150
#> [63,] 52 2 0 180 1 170
#> [64,] 50 7 1 0 1 92
#> [65,] 50 4 0 4 1 100
#> [66,] 51 3 1 2 0 113
#> [67,] 50 1 1 0 0 150
#> [68,] 47 8 0 180 0 160
#> [69,] 47 6 0 180 1 162
#> [70,] 51 8 0 180 1 140
#> [71,] 46 3 0 180 1 120
#> [72,] 46 1 1 1 0 145
#> [73,] 50 4 1 1 0 150
#> [74,] 48 7 1 0 1 110
#> [75,] 49 9 1 3 0 102
#> [76,] 53 5 0 180 1 140
#> [77,] 54 17 1 12 1 102
#> [78,] 53 7 1 0 0 199
#> [79,] 51 3 1 1 0 140
#> [80,] 50 2 0 5 1 106
#> [81,] 50 10 1 6 0 122
#> [82,] 50 14 1 13 0 170
#> [83,] 53 8 1 7 0 160
#> [84,] 51 25 1 1 0 202
#> [85,] 49 5 1 2 1 150
#> [86,] 53 4 0 4 0 140
#> [87,] 52 14 1 7 1 200
#> [88,] 48 6 0 180 0 160
#> [89,] 48 11 1 10 0 120
#> [90,] 51 13 0 99 1 160
#> [91,] 54 9 1 0 1 138
#> [92,] 55 3 1 1 0 150
#> [93,] 55 6 1 2 1 114
#> [94,] 54 9 1 1 0 130
#> [95,] 55 4 1 2 0 150
#> [96,] 52 4 0 180 1 180
#> [97,] 51 13 1 11 0 145
#> [98,] 50 5 1 4 1 150
#> [99,] 54 4 1 0 1 121
#> [100,] 52 4 0 180 0 183
#> [101,] 50 3 0 174 1 153
#> [102,] 49 6 1 0 1 130
#> [103,] 49 1 0 1 1 110
#> [104,] 53 9 0 9 1 95
#> [105,] 53 8 1 0 1 130
#> [106,] 56 4 1 1 1 130
#> [107,] 52 5 0 175 1 117
#> [108,] 55 2 0 2 0 145
#> [109,] 56 3 0 180 1 193
#> [110,] 56 2 0 180 0 132
#> [111,] 52 8 0 180 0 119
#> [112,] 53 18 1 9 1 150
#> [113,] 54 3 0 180 1 180
#> [114,] 52 16 0 16 0 152
#> [115,] 52 16 1 14 0 170
#> [116,] 53 15 0 15 1 90
#> [117,] 53 4 0 180 1 150
#> [118,] 55 6 0 180 1 100
#> [119,] 55 6 1 5 1 138
#> [120,] 54 12 1 0 1 190
#> [121,] 55 2 0 134 1 140
#> [122,] 54 3 0 180 0 128
#> [123,] 56 3 0 8 1 139
#> [124,] 55 1 0 2 0 130
#> [125,] 57 3 0 3 0 120
#> [126,] 54 7 1 2 0 129
#> [127,] 54 2 1 1 0 135
#> [128,] 52 9 1 3 0 170
#> [129,] 57 1 0 180 1 156
#> [130,] 57 1 0 1 1 100
#> [131,] 52 2 0 180 0 140
#> [132,] 52 15 1 14 0 130
#> [133,] 56 14 1 11 0 130
#> [134,] 53 3 1 0 1 200
#> [135,] 54 5 0 180 1 108
#> [136,] 55 3 1 1 1 156
#> [137,] 53 21 1 13 1 130
#> [138,] 57 4 0 180 1 119
#> [139,] 58 6 1 0 1 90
#> [140,] 53 15 1 10 1 130
#> [141,] 54 17 1 8 1 227
#> [142,] 55 9 1 2 1 147
#> [143,] 56 5 0 5 1 150
#> [144,] 54 23 1 8 0 120
#> [145,] 57 4 1 2 1 185
#> [146,] 53 4 0 147 1 145
#> [147,] 53 7 1 0 1 120
#> [148,] 57 11 1 10 1 129
#> [149,] 55 3 1 2 0 140
#> [150,] 54 7 1 0 1 141
#> [151,] 56 4 0 4 0 164
#> [152,] 59 15 1 10 0 140
#> [153,] 55 5 1 0 0 140
#> [154,] 55 2 0 2 0 106
#> [155,] 59 9 1 1 1 125
#> [156,] 60 11 1 9 0 106
#> [157,] 58 4 1 0 1 160
#> [158,] 57 2 0 2 1 120
#> [159,] 58 11 1 9 1 124
#> [160,] 55 5 1 0 1 160
#> [161,] 57 10 1 9 0 103
#> [162,] 59 6 1 0 1 140
#> [163,] 59 5 0 180 1 155
#> [164,] 59 4 1 0 1 152
#> [165,] 58 26 1 0 1 189
#> [166,] 61 9 0 9 1 160
#> [167,] 58 4 1 3 0 120
#> [168,] 59 2 1 1 0 140
#> [169,] 58 8 0 161 1 140
#> [170,] 58 14 1 6 0 190
#> [171,] 61 4 1 3 0 151
#> [172,] 61 9 1 8 0 150
#> [173,] 61 3 1 2 1 102
#> [174,] 61 20 1 13 0 130
#> [175,] 57 13 1 10 0 110
#> [176,] 57 2 1 0 1 116
#> [177,] 57 11 0 180 1 150
#> [178,] 61 3 0 17 0 143
#> [179,] 56 14 0 45 0 130
#> [180,] 57 3 1 2 0 120
#> [181,] 58 19 1 13 1 140
#> [182,] 56 13 1 6 1 158
#> [183,] 56 18 1 11 1 165
#> [184,] 59 9 1 0 1 80
#> [185,] 55 4 1 3 1 160
#> [186,] 58 11 0 172 1 135
#> [187,] 60 12 1 0 1 114
#> [188,] 55 9 1 7 1 135
#> [189,] 56 8 1 8 0 120
#> [190,] 61 13 1 12 1 130
#> [191,] 57 1 0 1 0 126
#> [192,] 59 5 1 2 0 182
#> [193,] 61 13 0 13 0 210
#> [194,] 58 8 1 5 0 152
#> [195,] 62 10 1 0 1 153
#> [196,] 62 7 1 2 1 180
#> [197,] 61 28 1 7 0 133
#> [198,] 61 7 0 7 1 150
#> [199,] 61 6 0 6 0 134
#> [200,] 57 12 1 9 1 120
#> [201,] 62 4 1 0 0 160
#> [202,] 60 17 1 8 1 140
#> [203,] 58 3 1 0 1 146
#> [204,] 62 4 1 3 0 173
#> [205,] 58 2 0 30 0 202
#> [206,] 61 5 0 5 1 110
#> [207,] 57 18 1 9 1 93
#> [208,] 61 5 0 5 1 160
#> [209,] 57 2 1 1 0 159
#> [210,] 62 17 1 10 1 180
#> [211,] 62 1 1 0 1 172
#> [212,] 58 7 0 180 1 150
#> [213,] 63 4 1 3 0 222
#> [214,] 63 15 1 10 1 126
#> [215,] 64 4 0 180 0 130
#> [216,] 60 18 1 13 0 132
#> [217,] 61 9 1 9 1 150
#> [218,] 58 9 1 9 0 110
#> [219,] 59 1 0 22 1 162
#> [220,] 59 4 0 180 0 196
#> [221,] 60 7 0 7 0 140
#> [222,] 59 5 1 1 0 148
#> [223,] 65 13 0 180 1 100
#> [224,] 63 1 0 1 0 162
#> [225,] 63 1 0 1 0 130
#> [226,] 62 6 0 180 0 170
#> [227,] 61 15 1 13 0 170
#> [228,] 60 3 0 3 0 168
#> [229,] 64 10 1 9 0 160
#> [230,] 63 12 1 10 0 200
#> [231,] 59 10 0 180 1 130
#> [232,] 60 8 0 17 1 130
#> [233,] 66 1 1 0 1 120
#> [234,] 63 10 1 0 1 148
#> [235,] 65 36 1 11 0 140
#> [236,] 61 10 1 2 1 194
#> [237,] 64 32 1 9 1 160
#> [238,] 63 7 0 180 0 120
#> [239,] 66 5 1 0 1 110
#> [240,] 65 10 1 8 1 120
#> [241,] 64 0 0 0 1 90
#> [242,] 60 6 0 180 0 130
#> [243,] 64 21 1 10 0 190
#> [244,] 61 12 1 11 0 154
#> [245,] 61 4 0 180 1 113
#> [246,] 63 16 1 7 1 110
#> [247,] 66 6 1 1 1 130
#> [248,] 65 3 1 0 1 80
#> [249,] 63 5 1 4 0 170
#> [250,] 63 2 1 1 0 180
#> [251,] 62 13 1 11 0 180
#> [252,] 66 16 1 11 1 169
#> [253,] 61 14 1 5 0 140
#> [254,] 61 15 1 10 0 130
#> [255,] 63 2 1 0 0 140
#> [256,] 64 19 1 8 1 160
#> [257,] 65 8 1 0 1 140
#> [258,] 67 6 0 180 1 170
#> [259,] 65 15 1 11 1 160
#> [260,] 68 5 1 4 1 150
#> [261,] 64 13 1 12 1 150
#> [262,] 64 6 1 0 1 125
#> [263,] 66 7 1 0 1 115
#> [264,] 66 13 1 0 0 118
#> [265,] 65 3 0 3 0 105
#> [266,] 64 0 0 0 1 148
#> [267,] 67 4 1 3 0 130
#> [268,] 66 3 1 0 1 135
#> [269,] 65 2 1 1 1 170
#> [270,] 68 1 0 180 1 166
#> [271,] 64 10 1 9 1 110
#> [272,] 63 7 1 0 0 162
#> [273,] 67 8 1 1 1 130
#> [274,] 68 5 0 5 1 90
#> [275,] 63 10 0 16 1 160
#> [276,] 68 18 0 180 1 260
#> [277,] 65 17 1 14 1 100
#> [278,] 63 8 1 1 1 162
#> [279,] 63 1 1 0 1 155
#> [280,] 63 10 0 18 1 130
#> [281,] 67 11 0 11 0 150
#> [282,] 68 11 0 180 0 160
#> [283,] 66 12 1 10 1 150
#> [284,] 66 11 1 0 0 100
#> [285,] 65 4 1 2 1 145
#> [286,] 63 2 0 180 0 150
#> [287,] 65 11 1 6 0 130
#> [288,] 69 21 1 10 0 180
#> [289,] 69 6 0 180 1 100
#> [290,] 66 9 1 8 0 130
#> [291,] 68 14 1 13 1 140
#> [292,] 65 8 1 0 1 90
#> [293,] 66 3 0 3 1 138
#> [294,] 69 1 1 0 0 170
#> [295,] 68 10 1 10 1 150
#> [296,] 65 1 1 0 0 133
#> [297,] 63 2 1 0 0 99
#> [298,] 67 2 0 180 0 184
#> [299,] 67 12 1 12 0 160
#> [300,] 69 6 0 99 1 140
#> [301,] 65 4 1 1 0 130
#> [302,] 64 0 1 0 1 118
#> [303,] 67 2 0 18 0 131
#> [304,] 66 7 1 5 1 131
#> [305,] 68 4 1 0 1 160
#> [306,] 65 13 1 12 1 130
#> [307,] 69 17 1 10 0 140
#> [308,] 69 8 0 93 0 140
#> [309,] 68 18 1 0 1 160
#> [310,] 65 6 0 101 1 115
#> [311,] 68 4 0 4 1 190
#> [312,] 71 3 0 5 0 112
#> [313,] 68 7 0 150 0 210
#> [314,] 70 14 0 171 0 166
#> [315,] 66 4 0 180 0 130
#> [316,] 67 10 1 9 0 200
#> [317,] 67 6 1 4 0 130
#> [318,] 68 18 1 14 1 170
#> [319,] 69 0 0 0 1 148
#> [320,] 65 2 0 180 0 130
#> [321,] 68 7 1 0 1 150
#> [322,] 69 3 1 2 0 151
#> [323,] 65 14 1 13 1 150
#> [324,] 71 7 0 7 0 230
#> [325,] 71 6 0 45 1 158
#> [326,] 69 5 0 5 1 142
#> [327,] 71 3 0 103 0 133
#> [328,] 69 3 0 3 1 130
#> [329,] 67 1 0 36 1 104
#> [330,] 67 5 0 5 0 130
#> [331,] 68 6 0 180 0 145
#> [332,] 69 8 1 5 1 195
#> [333,] 69 6 1 4 1 174
#> [334,] 72 3 1 0 1 132
#> [335,] 72 7 0 7 1 110
#> [336,] 69 8 1 7 1 108
#> [337,] 67 3 0 180 0 110
#> [338,] 69 19 0 180 0 130
#> [339,] 67 14 0 172 1 140
#> [340,] 69 4 1 3 0 132
#> [341,] 68 2 0 7 1 130
#> [342,] 69 8 1 2 0 121
#> [343,] 70 9 0 180 1 142
#> [344,] 72 5 1 4 0 170
#> [345,] 67 22 1 1 1 140
#> [346,] 68 3 0 19 0 135
#> [347,] 67 12 1 8 0 120
#> [348,] 67 8 1 0 1 130
#> [349,] 72 13 1 11 1 195
#> [350,] 66 24 1 13 0 130
#> [351,] 70 35 1 0 1 105
#> [352,] 72 30 1 0 1 145
#> [353,] 70 7 0 7 0 102
#> [354,] 68 7 1 2 0 135
#> [355,] 70 11 0 180 1 210
#> [356,] 72 12 1 10 0 170
#> [357,] 67 8 0 180 1 170
#> [358,] 67 5 1 0 1 147
#> [359,] 67 9 0 180 0 158
#> [360,] 73 13 0 152 1 130
#> [361,] 72 2 0 2 1 100
#> [362,] 67 4 1 1 0 134
#> [363,] 71 1 0 173 1 188
#> [364,] 68 23 0 180 1 220
#> [365,] 71 3 1 2 0 150
#> [366,] 72 5 0 28 0 120
#> [367,] 71 5 0 180 0 191
#> [368,] 73 6 0 180 1 117
#> [369,] 72 16 1 1 1 130
#> [370,] 69 1 1 0 0 155
#> [371,] 73 6 1 0 1 270
#> [372,] 72 8 1 1 1 150
#> [373,] 71 2 1 0 1 180
#> [374,] 68 15 1 13 1 130
#> [375,] 70 3 0 3 1 159
#> [376,] 70 13 1 9 0 100
#> [377,] 73 4 0 180 1 154
#> [378,] 69 2 1 0 1 110
#> [379,] 71 3 1 1 0 150
#> [380,] 71 15 1 11 0 165
#> [381,] 74 20 0 20 1 180
#> [382,] 68 9 0 180 1 120
#> [383,] 71 20 1 10 0 140
#> [384,] 74 0 1 0 1 90
#> [385,] 71 17 1 11 0 160
#> [386,] 71 8 1 7 0 149
#> [387,] 69 12 1 1 1 149
#> [388,] 70 26 1 11 1 120
#> [389,] 74 4 0 4 0 120
#> [390,] 73 4 0 58 1 160
#> [391,] 70 3 0 180 1 154
#> [392,] 73 6 0 180 0 110
#> [393,] 72 15 1 0 1 150
#> [394,] 71 7 1 2 0 143
#> [395,] 72 8 1 0 1 140
#> [396,] 74 3 0 3 1 150
#> [397,] 71 13 1 8 0 121
#> [398,] 69 2 1 1 1 80
#> [399,] 71 14 1 13 1 170
#> [400,] 74 7 1 0 1 117
#> [401,] 72 10 1 8 1 153
#> [402,] 70 8 0 8 0 120
#> [403,] 75 1 0 1 0 133
#> [404,] 73 10 1 9 1 146
#> [405,] 72 10 1 9 1 160
#> [406,] 74 15 1 9 1 179
#> [407,] 71 2 0 10 1 112
#> [408,] 73 1 0 1 1 80
#> [409,] 75 9 1 7 0 140
#> [410,] 75 13 1 1 1 130
#> [411,] 71 11 1 8 0 110
#> [412,] 72 15 1 12 1 120
#> [413,] 73 10 1 8 0 120
#> [414,] 70 7 1 4 0 184
#> [415,] 73 10 0 180 0 162
#> [416,] 70 3 0 3 0 150
#> [417,] 73 5 1 3 1 112
#> [418,] 72 2 0 180 0 120
#> [419,] 75 1 0 180 1 140
#> [420,] 71 3 1 0 0 144
#> [421,] 73 5 0 180 0 126
#> [422,] 76 3 1 0 1 120
#> [423,] 72 5 0 180 0 154
#> [424,] 72 3 0 180 0 160
#> [425,] 76 5 0 5 1 130
#> [426,] 77 11 0 11 1 150
#> [427,] 75 3 1 1 0 180
#> [428,] 72 7 1 2 0 142
#> [429,] 73 15 0 15 1 160
#> [430,] 71 16 0 180 0 140
#> [431,] 73 10 1 10 0 124
#> [432,] 74 7 0 180 1 150
#> [433,] 74 3 0 3 1 128
#> [434,] 76 1 0 180 0 114
#> [435,] 74 2 1 1 0 140
#> [436,] 74 2 0 180 0 190
#> [437,] 72 4 0 85 1 120
#> [438,] 76 17 1 0 1 200
#> [439,] 76 13 1 10 0 110
#> [440,] 75 4 1 0 1 122
#> [441,] 75 0 0 0 1 130
#> [442,] 73 13 1 11 0 195
#> [443,] 75 12 0 12 1 160
#> [444,] 74 8 1 0 1 105
#> [445,] 76 13 1 8 1 148
#> [446,] 75 4 1 2 1 188
#> [447,] 74 6 0 180 0 160
#> [448,] 74 2 0 180 0 111
#> [449,] 73 1 0 52 1 105
#> [450,] 73 0 0 180 0 156
#> [451,] 72 5 0 180 0 120
#> [452,] 78 12 1 11 1 160
#> [453,] 76 44 1 10 0 105
#> [454,] 76 5 0 180 0 185
#> [455,] 74 10 1 0 1 135
#> [456,] 76 5 1 0 1 167
#> [457,] 75 9 0 180 1 140
#> [458,] 73 33 1 12 1 175
#> [459,] 77 5 1 0 0 123
#> [460,] 77 12 1 9 1 100
#> [461,] 73 10 1 9 0 146
#> [462,] 77 12 0 180 0 130
#> [463,] 77 1 1 0 1 90
#> [464,] 76 12 1 11 1 120
#> [465,] 78 5 1 0 1 170
#> [466,] 73 7 1 0 0 174
#> [467,] 74 6 0 79 1 140
#> [468,] 74 9 1 8 0 200
#> [469,] 74 2 1 0 1 130
#> [470,] 78 18 0 18 1 144
#> [471,] 77 3 0 180 0 110
#> [472,] 76 29 0 47 0 90
#> [473,] 73 8 1 1 1 162
#> [474,] 73 11 1 2 1 110
#> [475,] 78 7 0 7 1 133
#> [476,] 74 15 0 180 1 172
#> [477,] 78 8 1 6 1 110
#> [478,] 76 13 1 1 1 170
#> [479,] 80 10 1 6 1 147
#> [480,] 78 0 0 180 1 212
#> [481,] 78 13 1 5 0 130
#> [482,] 75 12 1 1 1 120
#> [483,] 78 15 0 180 1 270
#> [484,] 74 10 1 8 0 135
#> [485,] 78 12 1 9 0 150
#> [486,] 75 4 1 0 0 212
#> [487,] 78 10 0 180 1 130
#> [488,] 76 11 1 0 0 120
#> [489,] 75 11 1 4 0 162
#> [490,] 77 24 0 24 1 160
#> [491,] 80 9 0 23 1 128
#> [492,] 78 6 1 0 1 240
#> [493,] 76 3 1 0 1 140
#> [494,] 79 11 0 180 0 160
#> [495,] 79 2 1 0 1 121
#> [496,] 78 14 1 0 1 140
#> [497,] 81 1 0 1 0 130
#> [498,] 78 11 1 8 1 118
#> [499,] 76 4 0 4 1 160
#> [500,] 79 4 0 4 1 125
#> [501,] 76 10 1 8 0 180
#> [502,] 76 12 1 10 1 127
#> [503,] 80 3 1 0 1 120
#> [504,] 75 2 1 1 1 204
#> [505,] 76 1 0 1 1 140
#> [506,] 77 31 1 3 1 161
#> [507,] 79 3 0 3 0 120
#> [508,] 79 4 1 0 1 120
#> [509,] 81 1 0 180 0 120
#> [510,] 82 5 0 8 1 120
#> [511,] 80 40 1 0 1 138
#> [512,] 76 7 0 161 0 151
#> [513,] 80 15 1 0 1 90
#> [514,] 80 6 0 173 1 160
#> [515,] 78 32 0 180 1 130
#> [516,] 81 3 0 180 0 184
#> [517,] 78 7 0 7 1 147
#> [518,] 77 13 1 0 1 190
#> [519,] 80 5 1 1 1 108
#> [520,] 78 4 0 180 0 175
#> [521,] 78 26 1 5 0 194
#> [522,] 76 1 0 166 0 131
#> [523,] 80 1 0 1 0 100
#> [524,] 77 5 0 85 0 188
#> [525,] 79 6 0 6 0 152
#> [526,] 80 6 1 0 1 119
#> [527,] 78 2 0 180 0 148
#> [528,] 82 1 1 0 1 82
#> [529,] 79 10 0 180 1 150
#> [530,] 77 4 0 180 1 98
#> [531,] 81 1 0 108 0 129
#> [532,] 78 12 0 180 0 134
#> [533,] 79 1 0 125 0 193
#> [534,] 82 21 1 2 0 155
#> [535,] 84 22 1 10 0 180
#> [536,] 79 4 0 4 1 121
#> [537,] 80 6 0 6 1 110
#> [538,] 83 9 1 5 1 170
#> [539,] 82 5 0 180 0 110
#> [540,] 79 7 1 6 0 130
#> [541,] 83 4 0 103 0 97
#> [542,] 81 11 1 8 0 160
#> [543,] 81 5 0 177 0 41
#> [544,] 80 11 1 8 0 170
#> [545,] 79 4 0 4 1 183
#> [546,] 82 8 1 1 0 128
#> [547,] 79 1 0 180 1 170
#> [548,] 81 15 0 180 1 140
#> [549,] 80 7 1 0 1 146
#> [550,] 83 8 0 8 0 115
#> [551,] 81 16 0 16 1 110
#> [552,] 80 6 1 0 1 150
#> [553,] 80 11 1 8 0 110
#> [554,] 80 8 1 7 0 160
#> [555,] 79 7 0 177 0 197
#> [556,] 79 0 1 0 1 96
#> [557,] 85 4 0 180 0 90
#> [558,] 81 2 1 1 0 198
#> [559,] 82 6 0 128 1 100
#> [560,] 84 4 0 167 0 198
#> [561,] 80 3 1 1 1 230
#> [562,] 84 5 0 180 1 203
#> [563,] 81 1 0 1 1 150
#> [564,] 84 1 0 38 1 205
#> [565,] 83 3 0 180 0 174
#> [566,] 79 9 1 8 0 150
#> [567,] 85 3 1 2 1 160
#> [568,] 80 13 1 8 1 140
#> [569,] 84 4 0 89 1 129
#> [570,] 80 2 1 0 1 130
#> [571,] 79 4 0 4 1 60
#> [572,] 82 19 0 19 0 120
#> [573,] 83 9 0 180 0 198
#> [574,] 83 3 0 114 0 98
#> [575,] 81 14 1 12 1 128
#> [576,] 83 2 0 154 0 130
#> [577,] 82 0 0 2 1 100
#> [578,] 85 9 1 6 1 160
#> [579,] 81 4 0 4 0 175
#> [580,] 81 1 0 1 1 145
#> [581,] 81 12 0 12 1 163
#> [582,] 82 16 1 8 0 103
#> [583,] 81 4 0 4 0 160
#> [584,] 86 12 0 180 1 120
#> [585,] 83 12 1 2 1 170
#> [586,] 82 3 1 2 0 130
#> [587,] 82 15 1 0 0 183
#> [588,] 86 8 0 8 1 132
#> [589,] 81 16 1 9 0 180
#> [590,] 86 3 0 3 1 140
#> [591,] 84 3 0 180 1 120
#> [592,] 81 13 0 180 0 152
#> [593,] 85 3 0 3 1 118
#> [594,] 81 2 1 0 1 118
#> [595,] 81 4 0 180 0 160
#> [596,] 83 9 0 180 1 149
#> [597,] 82 1 0 180 1 193
#> [598,] 82 14 1 11 1 103
#> [599,] 86 6 1 0 1 140
#> [600,] 84 16 0 70 1 150
#> [601,] 83 19 0 43 0 150
#> [602,] 84 3 1 2 0 125
#> [603,] 86 2 0 180 1 169
#> [604,] 88 14 1 3 1 130
#> [605,] 84 7 1 2 0 148
#> [606,] 87 2 0 180 0 113
#> [607,] 84 9 0 92 1 110
#> [608,] 82 4 0 4 0 130
#> [609,] 86 13 0 177 0 163
#> [610,] 85 3 0 3 1 113
#> [611,] 84 13 0 62 1 100
#> [612,] 86 6 1 1 0 112
#> [613,] 88 4 0 4 0 100
#> [614,] 88 4 0 4 1 115
#> [615,] 85 22 0 22 1 184
#> [616,] 83 9 0 65 1 150
#> [617,] 86 9 1 7 1 142
#> [618,] 87 2 0 180 1 130
#> [619,] 87 8 0 8 1 157
#> [620,] 86 15 1 8 1 109
#> [621,] 88 4 0 4 0 86
#> [622,] 87 6 0 180 1 110
#> [623,] 84 8 0 180 1 119
#> [624,] 85 8 0 8 1 136
#> [625,] 84 2 0 110 1 174
#> [626,] 87 29 0 29 1 97
#> [627,] 87 15 1 9 1 138
#> [628,] 84 0 0 180 1 136
#> [629,] 89 10 0 46 1 170
#> [630,] 90 14 0 14 1 100
#> [631,] 86 4 0 180 1 145
#> [632,] 87 2 0 180 0 160
#> [633,] 87 6 1 0 0 125
#> [634,] 91 10 0 145 0 135
#> [635,] 86 3 1 0 1 80
#> [636,] 88 7 0 24 0 119
#> [637,] 88 8 0 50 1 154
#> [638,] 90 11 1 10 1 186
#> [639,] 87 6 0 126 1 168
#> [640,] 86 10 0 180 1 137
#> [641,] 86 9 1 7 0 130
#> [642,] 90 4 1 0 0 121
#> [643,] 91 1 0 1 1 74
#> [644,] 87 5 0 36 1 150
#> [645,] 90 5 1 0 1 125
#> [646,] 88 3 1 2 0 159
#> [647,] 89 3 1 1 1 160
#> [648,] 92 1 0 1 1 167
#> [649,] 91 3 0 33 1 137
#> [650,] 87 7 0 74 1 105
#> [651,] 89 12 1 0 1 130
#> [652,] 89 2 0 168 0 118
#> [653,] 91 5 0 169 1 176
#> [654,] 92 7 0 7 1 110
#> [655,] 91 0 0 0 0 0
#> [656,] 89 14 0 180 1 84
#> [657,] 90 18 0 180 0 188
#> [658,] 90 19 1 11 1 129
#> [659,] 94 6 0 50 0 78
#> [660,] 93 8 0 179 1 110
#> [661,] 94 8 0 8 1 142
#> [662,] 92 4 0 76 1 149
#> [663,] 90 16 0 16 1 106
#> [664,] 96 3 0 12 1 97
#> [665,] 95 8 1 5 1 150
#> [666,] 91 7 0 7 0 135
#> [667,] 92 2 0 2 0 112
#> [668,] 93 4 0 180 1 135
#> [669,] 96 3 1 0 1 104
#> [670,] 96 15 1 0 1 140
#>
#> $y
#> [1] 180.0+ 2.0+ 5.0+ 2.0+ 180.0+ 115.0 180.0+ 12.0 5.0+ 180.0+
#> [11] 180.0+ 180.0+ 2.0+ 2.0+ 180.0+ 180.0+ 3.0 180.0+ 180.0+ 180.0+
#> [21] 180.0+ 180.0+ 2.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [31] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 6.0+ 180.0+ 180.0+ 180.0+
#> [41] 180.0+ 73.0 161.0+ 180.0+ 180.0+ 180.0+ 180.0+ 177.0+ 180.0+ 180.0+
#> [51] 180.0+ 180.0+ 172.0+ 180.0+ 180.0+ 7.0 180.0+ 180.0+ 180.0+ 2.0
#> [61] 1.0 180.0+ 180.0+ 180.0+ 4.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [71] 180.0+ 180.0+ 180.0+ 7.0 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 5.0
#> [81] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 4.0+ 85.0 180.0+ 180.0+ 99.0
#> [91] 180.0+ 180.0+ 6.0+ 180.0+ 180.0+ 180.0+ 13.0+ 171.0+ 180.0+ 180.0+
#> [101] 174.0+ 6.0+ 1.0 9.0+ 180.0+ 180.0+ 175.0+ 2.0 180.0+ 180.0+
#> [111] 180.0+ 180.0+ 180.0+ 16.0+ 16.0 15.0+ 180.0+ 180.0+ 180.0+ 12.0+
#> [121] 134.0+ 180.0+ 8.0 2.0 3.0+ 180.0+ 180.0+ 180.0+ 180.0+ 1.0
#> [131] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [141] 171.0+ 15.0 5.0+ 180.0+ 4.0+ 147.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [151] 4.0+ 180.0+ 180.0+ 2.0+ 180.0+ 180.0+ 180.0+ 2.0 180.0+ 180.0+
#> [161] 180.0+ 64.0 180.0+ 180.0+ 180.0+ 9.0+ 180.0+ 180.0+ 161.0+ 171.0+
#> [171] 180.0+ 180.0+ 3.0 180.0+ 180.0+ 180.0+ 180.0+ 17.0 45.0 3.0+
#> [181] 19.0 180.0+ 180.0+ 9.0+ 180.0+ 172.0+ 172.0+ 24.0 8.0 180.0+
#> [191] 1.0+ 180.0+ 13.0+ 8.0+ 180.0+ 180.0+ 94.0 7.0 6.0 180.0+
#> [201] 180.0+ 180.0+ 3.0+ 180.0+ 30.0 5.0 18.0 5.0+ 180.0+ 180.0+
#> [211] 1.0 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 9.0 22.0 180.0+
#> [221] 7.0+ 180.0+ 180.0+ 1.0 1.0 180.0+ 180.0+ 3.0+ 167.0 180.0+
#> [231] 180.0+ 17.0 180.0+ 180.0+ 36.0 88.0 180.0+ 180.0+ 180.0+ 180.0+
#> [241] 0.5 180.0+ 180.0+ 12.0+ 180.0+ 180.0+ 180.0+ 3.0 180.0+ 180.0+
#> [251] 180.0+ 180.0+ 180.0+ 180.0+ 2.0+ 103.0 15.0 180.0+ 180.0+ 5.0+
#> [261] 13.0 180.0+ 179.0+ 166.0+ 3.0 0.5+ 180.0+ 3.0+ 175.0+ 180.0+
#> [271] 180.0+ 7.0+ 8.0 5.0 16.0 180.0+ 180.0+ 180.0+ 1.0+ 18.0
#> [281] 11.0+ 180.0+ 80.0 180.0+ 4.0+ 180.0+ 180.0+ 174.0+ 180.0+ 180.0+
#> [291] 180.0+ 8.0+ 3.0 175.0 10.0 180.0+ 180.0+ 180.0+ 12.0 99.0
#> [301] 180.0+ 0.5 18.0 7.0+ 180.0+ 180.0+ 180.0+ 93.0 18.0+ 101.0
#> [311] 4.0 5.0 150.0 171.0 180.0+ 174.0+ 6.0 180.0+ 0.5 180.0+
#> [321] 180.0+ 180.0+ 14.0+ 7.0+ 45.0 5.0+ 103.0 3.0+ 36.0 5.0+
#> [331] 180.0+ 180.0+ 97.0 180.0+ 7.0 8.0+ 180.0+ 180.0+ 172.0+ 180.0+
#> [341] 7.0 8.0+ 180.0+ 180.0+ 51.0 19.0 180.0+ 180.0+ 132.0 180.0+
#> [351] 180.0+ 162.0 7.0+ 7.0+ 180.0+ 12.0 180.0+ 180.0+ 180.0+ 152.0
#> [361] 2.0 76.0 173.0+ 180.0+ 180.0+ 28.0 180.0+ 180.0+ 16.0+ 180.0+
#> [371] 6.0 180.0+ 180.0+ 15.0 3.0+ 13.0+ 180.0+ 2.0 3.0+ 180.0+
#> [381] 20.0 180.0+ 20.0 0.5 180.0+ 8.0 12.0 180.0+ 4.0+ 58.0
#> [391] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 3.0 175.0 2.0 14.0+ 180.0+
#> [401] 10.0+ 8.0+ 1.0 180.0+ 159.0 180.0+ 10.0 1.0 180.0+ 13.0
#> [411] 180.0+ 180.0+ 10.0 104.0+ 180.0+ 3.0+ 5.0 180.0+ 180.0+ 180.0+
#> [421] 180.0+ 180.0+ 180.0+ 180.0+ 5.0 11.0+ 180.0+ 7.0 15.0+ 180.0+
#> [431] 10.0 180.0+ 3.0 180.0+ 180.0+ 180.0+ 85.0 17.0+ 174.0+ 4.0
#> [441] 0.5 180.0+ 12.0 180.0+ 180.0+ 46.0 180.0+ 180.0+ 52.0 180.0+
#> [451] 180.0+ 12.0 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 33.0 5.0 180.0+
#> [461] 180.0+ 180.0+ 1.0 12.0 180.0+ 7.0+ 79.0 168.0+ 176.0+ 18.0
#> [471] 180.0+ 47.0 180.0+ 11.0 7.0 180.0+ 8.0+ 180.0+ 10.0 180.0+
#> [481] 172.0 12.0 180.0+ 180.0+ 180.0+ 4.0+ 180.0+ 11.0 152.0+ 24.0
#> [491] 23.0 180.0+ 3.0+ 180.0+ 180.0+ 180.0+ 1.0 11.0 4.0 4.0
#> [501] 10.0+ 180.0+ 3.0+ 2.0+ 1.0 171.0 3.0 138.0 180.0+ 8.0
#> [511] 40.0 161.0 180.0+ 173.0 180.0+ 180.0+ 7.0+ 22.0 5.0+ 180.0+
#> [521] 171.0+ 166.0+ 1.0 85.0 6.0+ 6.0 180.0+ 1.0 180.0+ 180.0+
#> [531] 108.0 180.0+ 125.0 180.0+ 180.0+ 4.0 6.0 9.0+ 180.0+ 180.0+
#> [541] 103.0 180.0+ 177.0+ 169.0 4.0 180.0+ 180.0+ 180.0+ 7.0+ 8.0+
#> [551] 16.0 180.0+ 180.0+ 180.0+ 177.0+ 0.5 180.0+ 180.0+ 128.0 167.0
#> [561] 3.0+ 180.0+ 1.0 38.0 180.0+ 180.0+ 180.0+ 180.0+ 89.0 180.0+
#> [571] 4.0 19.0 180.0+ 114.0 180.0+ 154.0 2.0 180.0+ 4.0+ 1.0
#> [581] 12.0 16.0+ 4.0+ 180.0+ 77.0 3.0 83.0 8.0 180.0+ 3.0
#> [591] 180.0+ 180.0+ 3.0+ 180.0+ 180.0+ 180.0+ 180.0+ 174.0 6.0 70.0
#> [601] 43.0 180.0+ 180.0+ 14.0 180.0+ 180.0+ 92.0 4.0 177.0 3.0+
#> [611] 62.0 6.0+ 4.0+ 4.0 22.0 65.0 11.0 180.0+ 8.0+ 180.0+
#> [621] 4.0 180.0+ 180.0+ 8.0 110.0 29.0 180.0+ 180.0+ 46.0 14.0
#> [631] 180.0+ 180.0+ 25.0 145.0 3.0 24.0 50.0 11.0 126.0 180.0+
#> [641] 180.0+ 4.0 1.0 36.0 89.0 75.0 3.0+ 1.0 33.0 74.0
#> [651] 180.0+ 168.0 169.0 7.0 0.5 180.0+ 180.0+ 180.0+ 50.0 179.0+
#> [661] 8.0+ 76.0 16.0 12.0 8.0 7.0+ 2.0 180.0+ 3.0 15.0+
#>
#> $weights
#> NULL
#>
#> $offset
#> NULL
#>
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> surv.cindex
#> 0.8530769