Cross-Validated GLM with Elastic Net Regularization Survival Learner
mlr_learners_surv.cv_glmnet.Rd
Generalized linear models with elastic net regularization.
Calls glmnet::cv.glmnet()
from package glmnet.
Prediction types
This learner returns three prediction types:
lp
: a vector containing the linear predictors (relative risk scores), where each score corresponds to a specific test observation. Calculated usingglmnet::predict.cv.glmnet()
.crank
: same aslp
.distr
: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated usingglmnet::survfit.cv.glmnet()
. Parametersstype
andctype
relate to howlp
predictions are transformed into survival predictions and are described insurvival::survfit.coxph()
. By default the Breslow estimator is used for computing the baseline hazard.
Meta Information
Task type: “surv”
Predict Types: “crank”, “distr”, “lp”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, mlr3proba, mlr3extralearners, glmnet
Parameters
Id | Type | Default | Levels | Range |
alignment | character | lambda | lambda, fraction | - |
alpha | numeric | 1 | \([0, 1]\) | |
big | numeric | 9.9e+35 | \((-\infty, \infty)\) | |
devmax | numeric | 0.999 | \([0, 1]\) | |
dfmax | integer | - | \([0, \infty)\) | |
eps | numeric | 1e-06 | \([0, 1]\) | |
epsnr | numeric | 1e-08 | \([0, 1]\) | |
exclude | untyped | - | - | |
exmx | numeric | 250 | \((-\infty, \infty)\) | |
fdev | numeric | 1e-05 | \([0, 1]\) | |
foldid | untyped | NULL | - | |
gamma | untyped | - | - | |
grouped | logical | TRUE | TRUE, FALSE | - |
intercept | logical | TRUE | TRUE, FALSE | - |
keep | logical | FALSE | TRUE, FALSE | - |
lambda | untyped | - | - | |
lambda.min.ratio | numeric | - | \([0, 1]\) | |
lower.limits | untyped | -Inf | - | |
maxit | integer | 100000 | \([1, \infty)\) | |
mnlam | integer | 5 | \([1, \infty)\) | |
mxit | integer | 100 | \([1, \infty)\) | |
mxitnr | integer | 25 | \([1, \infty)\) | |
nfolds | integer | 10 | \([3, \infty)\) | |
nlambda | integer | 100 | \([1, \infty)\) | |
use_pred_offset | logical | TRUE | TRUE, FALSE | - |
parallel | logical | FALSE | TRUE, FALSE | - |
penalty.factor | untyped | - | - | |
pmax | integer | - | \([0, \infty)\) | |
pmin | numeric | 1e-09 | \([0, 1]\) | |
prec | numeric | 1e-10 | \((-\infty, \infty)\) | |
predict.gamma | numeric | gamma.1se | \((-\infty, \infty)\) | |
relax | logical | FALSE | TRUE, FALSE | - |
s | numeric | lambda.1se | \([0, \infty)\) | |
standardize | logical | TRUE | TRUE, FALSE | - |
standardize.response | logical | FALSE | TRUE, FALSE | - |
thresh | numeric | 1e-07 | \([0, \infty)\) | |
trace.it | integer | 0 | \([0, 1]\) | |
type.gaussian | character | - | covariance, naive | - |
type.logistic | character | Newton | Newton, modified.Newton | - |
type.measure | character | deviance | deviance, C | - |
type.multinomial | character | ungrouped | ungrouped, grouped | - |
upper.limits | untyped | Inf | - | |
stype | integer | 2 | \([1, 2]\) | |
ctype | integer | - | \([1, 2]\) |
Offset
If a Task
contains a column with the offset
role, it is automatically
incorporated during training via the offset
argument in glmnet::glmnet()
.
During prediction, the offset column from the test set is used only if
use_pred_offset = TRUE
(default), passed via the newoffset
argument in glmnet::predict.coxnet()
.
Otherwise, if the user sets use_pred_offset = FALSE
, a zero offset is applied,
effectively disabling the offset adjustment during prediction.
References
Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1–22. doi:10.18637/jss.v033.i01 .
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3proba::LearnerSurv
-> LearnerSurvCVGlmnet
Methods
Method selected_features()
Returns the set of selected features as reported by glmnet::predict.glmnet()
with type
set to "nonzero"
.
Arguments
lambda
(
numeric(1)
)
Customlambda
, defaults to the active lambda depending on parameter set.
Returns
(character()
) of feature names.
Examples
# Define the Learner
learner = mlr3::lrn("surv.cv_glmnet")
print(learner)
#> <LearnerSurvCVGlmnet:surv.cv_glmnet>: Regularized Generalized Linear Model
#> * Model: -
#> * Parameters: use_pred_offset=TRUE
#> * Packages: mlr3, mlr3proba, mlr3extralearners, glmnet
#> * Predict Types: [crank], distr, lp
#> * Feature Types: logical, integer, numeric
#> * Properties: offset, selected_features, weights
# Define a Task
task = mlr3::tsk("grace")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> $model
#>
#> Call: (if (cv) glmnet::cv.glmnet else glmnet::glmnet)(x = data, y = target, family = "cox")
#>
#> Measure: Partial Likelihood Deviance
#>
#> Lambda Index Measure SE Nonzero
#> min 0.00385 43 8.878 0.2827 6
#> 1se 0.05723 14 9.121 0.2706 3
#>
#> $x
#> age los revasc revascdays stchange sysbp
#> [1,] 32 5 1 0 1 121
#> [2,] 35 5 1 2 0 172
#> [3,] 34 5 0 5 0 120
#> [4,] 35 2 1 1 1 112
#> [5,] 37 9 0 180 1 151
#> [6,] 36 1 0 180 1 155
#> [7,] 36 5 1 0 1 115
#> [8,] 38 16 1 10 0 160
#> [9,] 38 12 1 11 1 92
#> [10,] 42 3 1 1 1 130
#> [11,] 40 2 1 1 1 148
#> [12,] 42 2 0 180 1 100
#> [13,] 38 5 1 3 0 125
#> [14,] 42 2 0 2 0 140
#> [15,] 40 6 0 180 1 138
#> [16,] 42 2 0 180 0 100
#> [17,] 43 3 1 0 1 100
#> [18,] 40 1 1 0 1 145
#> [19,] 43 4 1 0 1 130
#> [20,] 42 4 0 180 0 162
#> [21,] 40 3 1 1 0 170
#> [22,] 42 12 1 10 1 170
#> [23,] 42 2 0 180 1 124
#> [24,] 45 3 0 180 1 154
#> [25,] 41 10 1 8 0 150
#> [26,] 44 3 0 180 0 141
#> [27,] 41 13 1 1 0 140
#> [28,] 45 9 1 7 0 110
#> [29,] 41 5 1 4 1 141
#> [30,] 44 2 1 1 1 150
#> [31,] 43 2 0 180 1 140
#> [32,] 45 2 0 180 1 140
#> [33,] 46 15 0 180 0 120
#> [34,] 47 4 1 3 0 118
#> [35,] 48 15 0 180 1 160
#> [36,] 45 3 0 150 0 130
#> [37,] 44 3 1 0 1 180
#> [38,] 46 7 1 2 0 166
#> [39,] 43 29 0 180 1 180
#> [40,] 47 6 1 0 1 116
#> [41,] 46 13 1 10 0 100
#> [42,] 44 0 1 0 1 96
#> [43,] 47 4 1 3 1 160
#> [44,] 45 8 1 0 1 117
#> [45,] 49 5 0 73 1 136
#> [46,] 46 6 1 0 1 100
#> [47,] 44 4 1 0 1 114
#> [48,] 47 2 0 180 0 108
#> [49,] 44 9 1 8 1 135
#> [50,] 45 5 0 180 1 190
#> [51,] 46 5 1 3 0 130
#> [52,] 46 4 0 180 1 121
#> [53,] 44 2 0 180 0 142
#> [54,] 46 15 0 180 1 120
#> [55,] 45 9 1 0 1 145
#> [56,] 47 3 1 1 1 120
#> [57,] 48 3 0 180 0 154
#> [58,] 47 5 1 3 1 130
#> [59,] 47 9 1 6 0 170
#> [60,] 46 3 1 0 1 119
#> [61,] 49 4 0 180 0 117
#> [62,] 50 1 1 0 1 129
#> [63,] 48 2 1 0 0 184
#> [64,] 47 7 0 180 0 145
#> [65,] 50 6 1 2 1 140
#> [66,] 46 9 1 9 1 122
#> [67,] 50 7 0 180 1 110
#> [68,] 49 2 0 2 0 105
#> [69,] 51 1 0 1 1 145
#> [70,] 49 15 1 11 1 160
#> [71,] 47 2 0 180 0 150
#> [72,] 49 23 0 179 1 112
#> [73,] 46 6 1 0 1 156
#> [74,] 50 7 1 0 1 92
#> [75,] 50 4 0 4 1 100
#> [76,] 50 1 1 0 0 150
#> [77,] 49 7 1 4 1 90
#> [78,] 47 8 0 180 0 160
#> [79,] 47 6 0 180 1 162
#> [80,] 52 2 0 180 0 155
#> [81,] 46 3 0 180 1 120
#> [82,] 50 4 1 1 0 150
#> [83,] 48 7 1 0 1 110
#> [84,] 48 17 1 10 0 111
#> [85,] 52 4 1 4 0 152
#> [86,] 49 9 1 3 0 102
#> [87,] 49 15 0 180 1 160
#> [88,] 53 5 0 180 1 140
#> [89,] 54 17 1 12 1 102
#> [90,] 53 5 0 77 0 159
#> [91,] 54 6 1 3 0 129
#> [92,] 51 3 1 1 0 140
#> [93,] 50 2 0 5 1 106
#> [94,] 50 10 1 6 0 122
#> [95,] 53 8 1 7 0 160
#> [96,] 53 4 0 4 0 140
#> [97,] 52 14 1 7 1 200
#> [98,] 48 6 0 180 0 160
#> [99,] 48 11 1 10 0 120
#> [100,] 53 4 1 0 1 156
#> [101,] 51 13 0 99 1 160
#> [102,] 54 9 1 0 1 138
#> [103,] 49 16 0 16 0 125
#> [104,] 55 3 1 1 0 150
#> [105,] 52 7 1 2 0 154
#> [106,] 55 4 1 2 0 150
#> [107,] 52 4 0 180 1 180
#> [108,] 51 13 1 11 0 145
#> [109,] 50 5 1 4 1 150
#> [110,] 54 4 1 0 1 121
#> [111,] 50 3 0 174 1 153
#> [112,] 55 28 1 13 1 160
#> [113,] 49 6 1 0 1 130
#> [114,] 49 1 0 1 1 110
#> [115,] 53 9 0 9 1 95
#> [116,] 50 7 1 0 1 127
#> [117,] 55 2 0 2 0 145
#> [118,] 56 3 0 180 1 193
#> [119,] 56 2 0 180 0 132
#> [120,] 55 5 1 4 1 120
#> [121,] 52 8 0 180 0 119
#> [122,] 54 3 0 180 1 180
#> [123,] 55 6 0 180 0 170
#> [124,] 52 16 0 16 0 152
#> [125,] 52 16 1 14 0 170
#> [126,] 53 15 0 15 1 90
#> [127,] 55 2 0 134 1 140
#> [128,] 54 3 0 180 0 128
#> [129,] 56 3 0 8 1 139
#> [130,] 55 1 0 2 0 130
#> [131,] 54 7 1 2 0 129
#> [132,] 54 2 1 1 1 176
#> [133,] 57 5 1 3 1 138
#> [134,] 57 1 0 180 1 156
#> [135,] 56 4 1 0 1 140
#> [136,] 52 2 0 180 0 140
#> [137,] 55 11 1 7 0 104
#> [138,] 56 14 1 11 0 130
#> [139,] 57 10 0 180 1 170
#> [140,] 58 8 0 8 1 130
#> [141,] 54 5 0 180 1 108
#> [142,] 55 3 1 1 1 156
#> [143,] 53 21 1 13 1 130
#> [144,] 57 4 0 180 1 119
#> [145,] 53 15 1 10 1 130
#> [146,] 54 17 1 8 1 227
#> [147,] 55 9 1 2 1 147
#> [148,] 55 13 0 166 1 140
#> [149,] 56 5 0 5 1 150
#> [150,] 57 4 1 2 1 185
#> [151,] 53 4 0 147 1 145
#> [152,] 53 7 1 0 1 120
#> [153,] 57 11 1 10 1 129
#> [154,] 55 3 1 2 0 140
#> [155,] 54 7 1 0 1 141
#> [156,] 56 4 0 4 0 164
#> [157,] 59 15 1 10 0 140
#> [158,] 58 1 1 1 1 200
#> [159,] 55 5 1 0 0 140
#> [160,] 55 2 0 2 0 106
#> [161,] 59 9 1 1 1 125
#> [162,] 57 1 0 180 0 148
#> [163,] 60 11 1 9 0 106
#> [164,] 59 3 0 180 0 120
#> [165,] 57 2 0 2 1 120
#> [166,] 60 5 1 1 0 138
#> [167,] 58 11 1 9 1 124
#> [168,] 55 5 1 0 1 160
#> [169,] 59 6 1 0 1 140
#> [170,] 59 5 0 180 1 155
#> [171,] 59 4 1 0 1 152
#> [172,] 58 26 1 0 1 189
#> [173,] 58 4 1 3 0 120
#> [174,] 60 0 1 0 1 80
#> [175,] 59 2 1 1 0 140
#> [176,] 58 14 1 6 0 190
#> [177,] 61 4 1 3 0 151
#> [178,] 61 9 1 8 0 150
#> [179,] 61 3 1 2 1 102
#> [180,] 61 20 1 13 0 130
#> [181,] 57 2 1 0 1 116
#> [182,] 58 10 0 10 1 150
#> [183,] 61 3 0 17 0 143
#> [184,] 58 19 1 13 1 140
#> [185,] 56 13 1 6 1 158
#> [186,] 59 9 1 0 1 80
#> [187,] 58 11 0 172 1 135
#> [188,] 60 12 1 0 1 114
#> [189,] 55 9 1 7 1 135
#> [190,] 61 4 1 0 1 115
#> [191,] 59 11 1 8 1 190
#> [192,] 57 1 0 1 0 126
#> [193,] 59 5 1 2 0 182
#> [194,] 58 5 1 1 1 135
#> [195,] 59 10 0 180 0 160
#> [196,] 61 8 0 77 0 120
#> [197,] 58 8 1 5 0 152
#> [198,] 62 10 1 0 1 153
#> [199,] 61 28 1 7 0 133
#> [200,] 58 8 1 3 1 150
#> [201,] 57 7 0 169 0 180
#> [202,] 61 7 0 7 1 150
#> [203,] 60 7 0 7 0 147
#> [204,] 59 13 1 2 0 198
#> [205,] 62 4 1 0 0 160
#> [206,] 60 17 1 8 1 140
#> [207,] 62 4 1 3 0 173
#> [208,] 59 1 0 180 0 155
#> [209,] 59 16 1 9 1 133
#> [210,] 63 6 0 28 1 120
#> [211,] 61 5 0 5 1 110
#> [212,] 61 5 0 5 1 160
#> [213,] 58 11 1 9 0 179
#> [214,] 57 2 1 1 0 159
#> [215,] 63 3 1 1 0 180
#> [216,] 61 7 0 180 0 135
#> [217,] 62 3 0 180 1 105
#> [218,] 63 4 0 180 1 190
#> [219,] 63 15 1 10 1 126
#> [220,] 60 18 1 13 0 132
#> [221,] 59 8 0 180 1 140
#> [222,] 58 9 1 9 0 110
#> [223,] 62 7 0 7 0 150
#> [224,] 59 4 0 180 0 196
#> [225,] 60 7 1 5 1 141
#> [226,] 60 7 0 7 0 140
#> [227,] 59 5 1 1 0 148
#> [228,] 60 7 1 1 1 90
#> [229,] 65 13 0 180 1 100
#> [230,] 63 1 0 1 0 162
#> [231,] 63 1 0 1 0 130
#> [232,] 62 6 0 180 0 170
#> [233,] 61 15 1 13 0 170
#> [234,] 64 10 1 9 0 160
#> [235,] 61 6 1 1 1 117
#> [236,] 64 12 1 11 0 160
#> [237,] 66 1 1 0 1 120
#> [238,] 63 10 1 0 1 148
#> [239,] 63 14 1 9 0 123
#> [240,] 65 36 1 11 0 140
#> [241,] 66 3 1 1 0 127
#> [242,] 61 10 1 2 1 194
#> [243,] 63 12 1 9 0 114
#> [244,] 63 7 0 180 0 120
#> [245,] 66 5 1 0 1 110
#> [246,] 64 0 0 0 1 90
#> [247,] 60 6 0 180 0 130
#> [248,] 61 12 1 11 0 154
#> [249,] 64 9 0 180 0 150
#> [250,] 61 4 0 180 1 113
#> [251,] 63 16 1 7 1 110
#> [252,] 64 7 0 180 1 120
#> [253,] 66 6 1 1 1 130
#> [254,] 63 12 0 12 1 150
#> [255,] 62 3 1 1 1 199
#> [256,] 65 6 0 9 0 112
#> [257,] 63 5 1 4 0 170
#> [258,] 63 2 1 1 0 180
#> [259,] 62 13 1 11 0 180
#> [260,] 64 2 0 2 0 201
#> [261,] 66 18 1 5 0 142
#> [262,] 62 9 0 180 0 145
#> [263,] 61 14 1 5 0 140
#> [264,] 61 15 1 10 0 130
#> [265,] 63 9 1 8 1 160
#> [266,] 63 3 1 2 0 120
#> [267,] 63 2 1 0 0 140
#> [268,] 64 19 1 8 1 160
#> [269,] 65 8 1 0 1 140
#> [270,] 67 6 0 180 1 170
#> [271,] 65 15 1 11 1 160
#> [272,] 68 5 1 4 1 150
#> [273,] 64 13 1 12 1 150
#> [274,] 66 7 1 0 1 115
#> [275,] 64 14 1 13 1 150
#> [276,] 67 4 1 3 0 130
#> [277,] 66 3 1 0 1 135
#> [278,] 66 6 1 0 1 140
#> [279,] 68 1 0 180 1 166
#> [280,] 64 10 1 9 1 110
#> [281,] 63 7 1 0 0 162
#> [282,] 67 8 1 1 1 130
#> [283,] 68 5 0 5 1 90
#> [284,] 63 10 0 16 1 160
#> [285,] 66 14 0 180 0 130
#> [286,] 64 1 0 1 1 120
#> [287,] 68 18 0 180 1 260
#> [288,] 65 17 1 14 1 100
#> [289,] 63 8 1 1 1 162
#> [290,] 65 18 1 3 0 120
#> [291,] 63 1 1 0 1 155
#> [292,] 67 11 0 11 0 150
#> [293,] 68 14 0 79 0 172
#> [294,] 65 15 1 12 1 150
#> [295,] 66 11 1 0 0 100
#> [296,] 69 12 0 15 1 140
#> [297,] 63 2 0 180 0 150
#> [298,] 65 11 1 6 0 130
#> [299,] 69 6 0 180 1 100
#> [300,] 66 9 1 8 0 130
#> [301,] 63 8 0 180 1 120
#> [302,] 69 1 1 0 0 170
#> [303,] 67 1 0 180 1 160
#> [304,] 68 10 1 10 1 150
#> [305,] 65 1 1 0 0 133
#> [306,] 67 2 0 180 0 184
#> [307,] 65 10 1 1 1 148
#> [308,] 66 19 1 12 1 150
#> [309,] 67 12 1 12 0 160
#> [310,] 69 6 0 99 1 140
#> [311,] 65 4 1 1 0 130
#> [312,] 64 4 0 179 0 160
#> [313,] 66 4 0 180 1 130
#> [314,] 70 15 1 12 1 132
#> [315,] 64 0 1 0 1 118
#> [316,] 67 2 0 18 0 131
#> [317,] 66 4 0 180 0 177
#> [318,] 68 4 1 0 1 160
#> [319,] 69 4 1 3 1 150
#> [320,] 66 6 0 180 0 140
#> [321,] 68 18 1 0 1 160
#> [322,] 65 6 0 101 1 115
#> [323,] 71 3 0 5 0 112
#> [324,] 68 7 0 150 0 210
#> [325,] 71 20 1 0 1 160
#> [326,] 66 9 1 3 1 151
#> [327,] 66 1 1 1 1 165
#> [328,] 70 4 1 0 1 180
#> [329,] 69 8 0 180 1 153
#> [330,] 70 14 0 171 0 166
#> [331,] 67 10 1 9 0 200
#> [332,] 67 6 1 4 0 130
#> [333,] 69 0 0 0 1 148
#> [334,] 65 2 0 180 0 130
#> [335,] 68 7 1 0 1 150
#> [336,] 67 14 1 13 0 130
#> [337,] 65 14 1 13 1 150
#> [338,] 69 8 0 180 1 180
#> [339,] 71 7 0 7 0 230
#> [340,] 71 6 0 45 1 158
#> [341,] 69 5 0 5 1 142
#> [342,] 71 3 0 103 0 133
#> [343,] 70 22 1 13 0 103
#> [344,] 68 6 0 180 0 145
#> [345,] 69 8 1 5 1 195
#> [346,] 72 3 1 0 1 132
#> [347,] 69 8 1 7 1 108
#> [348,] 67 3 0 180 0 110
#> [349,] 69 19 0 180 0 130
#> [350,] 69 11 1 0 1 120
#> [351,] 67 7 1 4 0 122
#> [352,] 68 2 0 7 1 130
#> [353,] 69 8 1 2 0 121
#> [354,] 70 3 0 123 0 130
#> [355,] 70 9 0 180 1 142
#> [356,] 72 5 1 4 0 170
#> [357,] 67 22 1 1 1 140
#> [358,] 69 1 0 1 1 110
#> [359,] 67 1 0 1 1 60
#> [360,] 69 5 0 76 0 120
#> [361,] 67 8 1 0 1 130
#> [362,] 72 13 1 11 1 195
#> [363,] 66 24 1 13 0 130
#> [364,] 70 35 1 0 1 105
#> [365,] 72 30 1 0 1 145
#> [366,] 73 20 1 0 1 170
#> [367,] 70 11 0 180 1 210
#> [368,] 72 19 1 8 0 120
#> [369,] 72 12 1 10 0 170
#> [370,] 67 5 1 0 1 147
#> [371,] 67 9 0 180 0 158
#> [372,] 67 4 1 1 0 134
#> [373,] 72 6 1 5 0 115
#> [374,] 71 1 0 173 1 188
#> [375,] 68 23 0 180 1 220
#> [376,] 71 3 1 2 0 150
#> [377,] 68 4 1 3 0 210
#> [378,] 69 16 1 10 1 140
#> [379,] 68 7 0 180 1 130
#> [380,] 72 16 1 1 1 130
#> [381,] 69 1 1 0 0 155
#> [382,] 73 6 1 0 1 270
#> [383,] 72 8 1 1 1 150
#> [384,] 71 2 1 0 1 180
#> [385,] 73 7 0 7 1 140
#> [386,] 70 3 0 3 1 159
#> [387,] 74 8 1 0 1 85
#> [388,] 73 4 0 180 1 154
#> [389,] 69 2 1 0 1 110
#> [390,] 71 3 1 1 0 150
#> [391,] 71 15 1 11 0 165
#> [392,] 74 20 0 20 1 180
#> [393,] 68 9 0 180 1 120
#> [394,] 71 20 1 10 0 140
#> [395,] 73 3 1 0 1 136
#> [396,] 70 5 1 0 1 190
#> [397,] 71 17 1 11 0 160
#> [398,] 71 8 1 7 0 149
#> [399,] 69 12 1 1 1 149
#> [400,] 70 26 1 11 1 120
#> [401,] 74 4 0 4 0 120
#> [402,] 73 4 0 58 1 160
#> [403,] 72 5 1 3 1 160
#> [404,] 73 6 0 180 0 110
#> [405,] 72 15 1 0 1 150
#> [406,] 71 7 1 2 0 143
#> [407,] 72 8 1 0 1 140
#> [408,] 74 3 0 3 1 150
#> [409,] 73 17 1 11 0 140
#> [410,] 71 13 1 8 0 121
#> [411,] 70 4 1 0 1 140
#> [412,] 74 7 1 0 1 117
#> [413,] 72 10 1 8 1 153
#> [414,] 72 15 1 13 0 156
#> [415,] 70 8 0 8 0 120
#> [416,] 71 10 1 9 1 120
#> [417,] 75 1 0 1 0 133
#> [418,] 75 2 1 1 0 145
#> [419,] 73 10 1 9 1 146
#> [420,] 71 2 0 10 1 112
#> [421,] 73 1 0 1 1 80
#> [422,] 75 9 1 7 0 140
#> [423,] 71 4 0 4 0 134
#> [424,] 73 10 1 8 0 120
#> [425,] 72 7 0 57 1 145
#> [426,] 73 10 0 180 0 162
#> [427,] 72 11 0 11 1 140
#> [428,] 70 3 0 3 0 150
#> [429,] 73 5 1 3 1 112
#> [430,] 73 12 1 12 1 140
#> [431,] 72 2 0 180 0 120
#> [432,] 75 1 0 180 1 140
#> [433,] 71 3 1 0 0 144
#> [434,] 73 4 0 180 0 124
#> [435,] 74 34 1 8 1 233
#> [436,] 76 3 1 0 1 120
#> [437,] 71 32 1 12 1 107
#> [438,] 72 3 0 180 0 160
#> [439,] 76 5 0 5 1 130
#> [440,] 77 11 0 11 1 150
#> [441,] 77 4 0 4 0 185
#> [442,] 75 3 1 1 0 180
#> [443,] 72 7 1 2 0 142
#> [444,] 73 15 0 15 1 160
#> [445,] 73 10 1 10 0 124
#> [446,] 76 1 0 180 0 114
#> [447,] 76 8 1 0 1 141
#> [448,] 75 23 1 14 1 110
#> [449,] 74 2 0 180 0 190
#> [450,] 72 4 1 3 0 160
#> [451,] 73 4 1 3 1 125
#> [452,] 76 13 1 10 0 110
#> [453,] 75 4 1 0 1 122
#> [454,] 75 0 0 0 1 130
#> [455,] 73 13 1 11 0 195
#> [456,] 75 12 0 12 1 160
#> [457,] 76 13 1 8 1 148
#> [458,] 75 4 1 2 1 188
#> [459,] 75 1 0 1 1 125
#> [460,] 74 2 0 180 0 111
#> [461,] 78 12 1 11 1 160
#> [462,] 76 44 1 10 0 105
#> [463,] 76 5 0 180 0 185
#> [464,] 74 10 1 0 1 135
#> [465,] 76 5 1 0 1 167
#> [466,] 73 33 1 12 1 175
#> [467,] 77 5 1 0 0 123
#> [468,] 77 12 1 9 1 100
#> [469,] 73 10 1 9 0 146
#> [470,] 77 1 1 0 1 90
#> [471,] 76 12 1 11 1 120
#> [472,] 73 7 1 0 0 174
#> [473,] 74 6 0 79 1 140
#> [474,] 75 3 1 1 1 171
#> [475,] 75 6 0 180 0 150
#> [476,] 74 2 1 0 1 130
#> [477,] 73 11 1 2 1 110
#> [478,] 78 7 0 7 1 133
#> [479,] 74 15 0 180 1 172
#> [480,] 78 8 1 6 1 110
#> [481,] 74 7 0 7 0 161
#> [482,] 76 13 1 1 1 170
#> [483,] 78 32 1 9 1 198
#> [484,] 79 6 0 180 0 170
#> [485,] 80 10 1 6 1 147
#> [486,] 78 0 0 180 1 212
#> [487,] 78 13 1 5 0 130
#> [488,] 75 5 0 119 1 150
#> [489,] 75 12 1 1 1 120
#> [490,] 78 15 0 180 1 270
#> [491,] 75 13 1 6 0 150
#> [492,] 74 10 1 8 0 135
#> [493,] 78 12 1 9 0 150
#> [494,] 75 4 1 0 0 212
#> [495,] 77 2 1 0 1 143
#> [496,] 78 10 0 180 1 130
#> [497,] 76 7 0 29 1 150
#> [498,] 77 24 0 24 1 160
#> [499,] 79 8 0 32 1 120
#> [500,] 80 9 0 23 1 128
#> [501,] 78 6 1 0 1 240
#> [502,] 78 11 1 1 1 140
#> [503,] 81 1 0 1 0 130
#> [504,] 78 11 1 8 1 118
#> [505,] 79 4 0 4 1 125
#> [506,] 76 12 1 10 1 127
#> [507,] 77 6 0 6 1 107
#> [508,] 80 3 1 0 1 120
#> [509,] 76 1 0 1 1 140
#> [510,] 77 31 1 3 1 161
#> [511,] 76 1 0 1 1 90
#> [512,] 78 7 1 0 1 110
#> [513,] 79 3 0 3 0 120
#> [514,] 77 9 1 4 0 141
#> [515,] 82 5 0 8 1 120
#> [516,] 80 40 1 0 1 138
#> [517,] 80 17 1 12 0 100
#> [518,] 76 7 0 161 0 151
#> [519,] 80 15 1 0 1 90
#> [520,] 79 28 0 164 0 100
#> [521,] 80 9 0 118 1 186
#> [522,] 80 6 0 173 1 160
#> [523,] 78 32 0 180 1 130
#> [524,] 79 1 0 37 1 140
#> [525,] 81 2 0 175 0 172
#> [526,] 78 7 0 7 1 147
#> [527,] 77 13 1 0 1 190
#> [528,] 78 15 0 15 0 165
#> [529,] 78 4 0 180 0 175
#> [530,] 79 3 0 3 1 101
#> [531,] 78 26 1 5 0 194
#> [532,] 76 1 0 166 0 131
#> [533,] 78 3 1 1 1 152
#> [534,] 77 10 1 8 1 130
#> [535,] 82 3 1 1 1 144
#> [536,] 77 5 0 85 0 188
#> [537,] 80 2 1 1 0 168
#> [538,] 78 2 0 180 0 148
#> [539,] 79 10 0 180 1 150
#> [540,] 77 4 0 180 1 98
#> [541,] 81 1 0 108 0 129
#> [542,] 78 12 0 180 0 134
#> [543,] 79 1 0 125 0 193
#> [544,] 84 22 1 10 0 180
#> [545,] 80 6 0 6 1 110
#> [546,] 83 9 1 5 1 170
#> [547,] 82 5 0 180 0 110
#> [548,] 83 5 0 180 0 148
#> [549,] 79 7 1 6 0 130
#> [550,] 81 11 1 8 0 160
#> [551,] 81 5 0 177 0 41
#> [552,] 80 11 1 8 0 170
#> [553,] 78 23 1 10 1 145
#> [554,] 79 4 0 4 1 183
#> [555,] 78 9 1 4 1 120
#> [556,] 82 8 1 1 0 128
#> [557,] 79 1 0 180 1 170
#> [558,] 81 15 0 180 1 140
#> [559,] 80 7 1 0 1 146
#> [560,] 84 5 1 1 1 85
#> [561,] 83 8 0 8 0 115
#> [562,] 81 16 0 16 1 110
#> [563,] 80 6 1 0 1 150
#> [564,] 80 11 1 8 0 110
#> [565,] 80 8 1 7 0 160
#> [566,] 79 7 0 177 0 197
#> [567,] 85 4 0 180 0 90
#> [568,] 83 2 0 2 1 155
#> [569,] 82 6 0 128 1 100
#> [570,] 84 4 0 167 0 198
#> [571,] 80 3 1 1 1 230
#> [572,] 84 5 0 180 1 203
#> [573,] 84 1 0 38 1 205
#> [574,] 83 3 0 180 0 174
#> [575,] 81 4 0 90 1 138
#> [576,] 85 3 1 2 1 160
#> [577,] 80 13 1 8 1 140
#> [578,] 84 4 0 89 1 129
#> [579,] 79 4 0 4 1 60
#> [580,] 82 19 0 19 0 120
#> [581,] 80 30 1 13 0 220
#> [582,] 82 0 0 2 1 100
#> [583,] 85 9 1 6 1 160
#> [584,] 83 1 0 180 0 160
#> [585,] 84 15 1 13 1 110
#> [586,] 81 1 0 1 1 145
#> [587,] 81 12 0 12 1 163
#> [588,] 82 16 1 8 0 103
#> [589,] 82 5 1 0 1 146
#> [590,] 81 4 0 4 0 160
#> [591,] 86 12 0 180 1 120
#> [592,] 83 12 1 2 1 170
#> [593,] 82 3 1 2 0 130
#> [594,] 80 2 0 88 0 135
#> [595,] 83 7 0 126 0 135
#> [596,] 86 8 0 8 1 132
#> [597,] 81 16 1 9 0 180
#> [598,] 82 9 0 180 1 134
#> [599,] 84 3 0 180 1 120
#> [600,] 81 13 0 180 0 152
#> [601,] 85 3 0 3 1 118
#> [602,] 81 4 0 180 0 160
#> [603,] 82 14 1 11 1 103
#> [604,] 86 6 1 0 1 140
#> [605,] 84 16 0 70 1 150
#> [606,] 86 2 0 180 1 169
#> [607,] 88 14 1 3 1 130
#> [608,] 83 13 1 12 0 170
#> [609,] 84 7 1 2 0 148
#> [610,] 84 3 0 180 1 170
#> [611,] 86 4 0 38 1 122
#> [612,] 82 4 0 4 0 130
#> [613,] 86 13 0 177 0 163
#> [614,] 85 3 0 3 1 113
#> [615,] 86 6 0 6 1 117
#> [616,] 84 13 0 62 1 100
#> [617,] 86 6 1 1 0 112
#> [618,] 88 4 0 4 1 115
#> [619,] 85 22 0 22 1 184
#> [620,] 83 9 0 65 1 150
#> [621,] 86 9 1 7 1 142
#> [622,] 88 3 0 115 0 110
#> [623,] 87 8 0 8 1 157
#> [624,] 86 15 1 8 1 109
#> [625,] 88 4 0 4 0 86
#> [626,] 89 4 0 4 1 153
#> [627,] 87 6 0 180 1 110
#> [628,] 87 1 0 1 0 170
#> [629,] 84 8 0 180 1 119
#> [630,] 85 8 0 8 1 136
#> [631,] 87 29 0 29 1 97
#> [632,] 87 15 1 9 1 138
#> [633,] 84 0 0 180 1 136
#> [634,] 89 10 0 46 1 170
#> [635,] 86 4 0 180 1 145
#> [636,] 87 2 0 180 0 160
#> [637,] 87 6 1 0 0 125
#> [638,] 91 10 0 145 0 135
#> [639,] 86 3 1 0 1 80
#> [640,] 88 7 0 24 0 119
#> [641,] 88 8 0 50 1 154
#> [642,] 90 11 1 10 1 186
#> [643,] 87 6 0 126 1 168
#> [644,] 87 5 0 36 1 150
#> [645,] 88 3 1 2 0 159
#> [646,] 89 3 1 1 1 160
#> [647,] 92 1 0 1 1 167
#> [648,] 91 3 0 33 1 137
#> [649,] 88 5 0 158 0 100
#> [650,] 89 12 1 0 1 130
#> [651,] 89 2 0 168 0 118
#> [652,] 91 5 0 169 1 176
#> [653,] 89 52 0 52 1 130
#> [654,] 92 7 0 7 1 110
#> [655,] 91 0 0 0 0 0
#> [656,] 90 19 1 11 1 129
#> [657,] 94 6 0 50 0 78
#> [658,] 91 2 0 2 1 116
#> [659,] 93 8 0 179 1 110
#> [660,] 94 8 0 8 1 142
#> [661,] 91 1 0 180 0 158
#> [662,] 90 16 0 16 1 106
#> [663,] 90 3 0 67 0 162
#> [664,] 96 3 0 12 1 97
#> [665,] 94 3 0 26 1 144
#> [666,] 91 12 0 53 1 212
#> [667,] 91 7 0 7 0 135
#> [668,] 92 2 0 2 0 112
#> [669,] 93 4 0 180 1 135
#> [670,] 96 3 1 0 1 104
#>
#> $y
#> [1] 5.0+ 5.0+ 5.0+ 2.0+ 180.0+ 180.0+ 5.0+ 180.0+ 180.0+ 180.0+
#> [11] 2.0+ 180.0+ 5.0+ 2.0+ 180.0+ 180.0+ 3.0 180.0+ 180.0+ 180.0+
#> [21] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 5.0+ 180.0+
#> [31] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 150.0 180.0+ 180.0+ 180.0+ 6.0+
#> [41] 180.0+ 180.0+ 180.0+ 180.0+ 73.0 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [51] 5.0+ 180.0+ 180.0+ 180.0+ 177.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [61] 180.0+ 172.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 2.0 1.0 179.0+
#> [71] 180.0+ 179.0+ 180.0+ 180.0+ 4.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [81] 180.0+ 180.0+ 7.0 88.0+ 4.0+ 180.0+ 180.0+ 180.0+ 180.0+ 77.0
#> [91] 180.0+ 180.0+ 5.0 180.0+ 180.0+ 4.0+ 85.0 180.0+ 180.0+ 166.0+
#> [101] 99.0 180.0+ 16.0+ 180.0+ 7.0+ 180.0+ 180.0+ 13.0+ 171.0+ 180.0+
#> [111] 174.0+ 28.0 6.0+ 1.0 9.0+ 180.0+ 2.0 180.0+ 180.0+ 180.0+
#> [121] 180.0+ 180.0+ 180.0+ 16.0+ 16.0 15.0+ 134.0+ 180.0+ 8.0 2.0
#> [131] 180.0+ 180.0+ 140.0 180.0+ 165.0 180.0+ 180.0+ 180.0+ 180.0+ 8.0+
#> [141] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 171.0+ 15.0 166.0+ 5.0+ 4.0+
#> [151] 147.0+ 180.0+ 180.0+ 180.0+ 180.0+ 4.0+ 180.0+ 1.0 180.0+ 2.0+
#> [161] 180.0+ 180.0+ 180.0+ 180.0+ 2.0 180.0+ 180.0+ 180.0+ 64.0 180.0+
#> [171] 180.0+ 180.0+ 180.0+ 0.5 180.0+ 171.0+ 180.0+ 180.0+ 3.0 180.0+
#> [181] 180.0+ 10.0+ 17.0 19.0 180.0+ 9.0+ 172.0+ 172.0+ 24.0 180.0+
#> [191] 180.0+ 1.0+ 180.0+ 180.0+ 180.0+ 77.0 8.0+ 180.0+ 94.0 180.0+
#> [201] 169.0 7.0 7.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 28.0
#> [211] 5.0 5.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [221] 180.0+ 9.0 7.0+ 180.0+ 84.0 7.0+ 180.0+ 180.0+ 180.0+ 1.0
#> [231] 1.0 180.0+ 180.0+ 167.0 180.0+ 12.0 180.0+ 180.0+ 14.0+ 36.0
#> [241] 3.0+ 88.0 12.0 180.0+ 180.0+ 0.5 180.0+ 12.0+ 180.0+ 180.0+
#> [251] 180.0+ 180.0+ 180.0+ 12.0 180.0+ 9.0 180.0+ 180.0+ 180.0+ 2.0+
#> [261] 18.0+ 180.0+ 180.0+ 180.0+ 180.0+ 3.0+ 2.0+ 103.0 15.0 180.0+
#> [271] 180.0+ 5.0+ 13.0 179.0+ 14.0+ 180.0+ 3.0+ 180.0+ 180.0+ 180.0+
#> [281] 7.0+ 8.0 5.0 16.0 180.0+ 1.0 180.0+ 180.0+ 180.0+ 123.0+
#> [291] 1.0+ 11.0+ 79.0 15.0+ 180.0+ 15.0 180.0+ 180.0+ 180.0+ 180.0+
#> [301] 180.0+ 175.0 180.0+ 10.0 180.0+ 180.0+ 180.0+ 19.0+ 12.0 99.0
#> [311] 180.0+ 179.0+ 180.0+ 180.0+ 0.5 18.0 180.0+ 180.0+ 152.0+ 180.0+
#> [321] 18.0+ 101.0 5.0 150.0 180.0+ 180.0+ 1.0 180.0+ 180.0+ 171.0
#> [331] 174.0+ 6.0 0.5 180.0+ 180.0+ 180.0+ 14.0+ 180.0+ 7.0+ 45.0
#> [341] 5.0+ 103.0 180.0+ 180.0+ 180.0+ 180.0+ 8.0+ 180.0+ 180.0+ 180.0+
#> [351] 7.0 7.0 8.0+ 123.0 180.0+ 180.0+ 51.0 1.0 1.0 76.0
#> [361] 180.0+ 132.0 180.0+ 180.0+ 162.0 124.0 180.0+ 180.0+ 12.0 180.0+
#> [371] 180.0+ 76.0 180.0+ 173.0+ 180.0+ 180.0+ 180.0+ 16.0+ 180.0+ 16.0+
#> [381] 180.0+ 6.0 180.0+ 180.0+ 7.0+ 3.0+ 180.0+ 180.0+ 2.0 3.0+
#> [391] 180.0+ 20.0 180.0+ 20.0 180.0+ 180.0+ 180.0+ 8.0 12.0 180.0+
#> [401] 4.0+ 58.0 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 3.0 180.0+ 175.0
#> [411] 180.0+ 180.0+ 10.0+ 180.0+ 8.0+ 179.0+ 1.0 180.0+ 180.0+ 10.0
#> [421] 1.0 180.0+ 4.0+ 10.0 57.0 180.0+ 11.0 3.0+ 5.0 12.0
#> [431] 180.0+ 180.0+ 180.0+ 180.0+ 34.0 180.0+ 177.0+ 180.0+ 5.0 11.0+
#> [441] 4.0+ 180.0+ 7.0 15.0+ 10.0 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [451] 180.0+ 174.0+ 4.0 0.5 180.0+ 12.0 180.0+ 46.0 1.0 180.0+
#> [461] 12.0 180.0+ 180.0+ 180.0+ 180.0+ 33.0 5.0 180.0+ 180.0+ 1.0
#> [471] 12.0 7.0+ 79.0 3.0 180.0+ 176.0+ 11.0 7.0 180.0+ 8.0+
#> [481] 7.0 180.0+ 32.0 180.0+ 10.0 180.0+ 172.0 119.0 12.0 180.0+
#> [491] 180.0+ 180.0+ 180.0+ 4.0+ 2.0 180.0+ 29.0 24.0 32.0 23.0
#> [501] 180.0+ 180.0+ 1.0 11.0 4.0 180.0+ 6.0 3.0+ 1.0 171.0
#> [511] 1.0 43.0 3.0 71.0 8.0 40.0 17.0 161.0 180.0+ 164.0
#> [521] 118.0 173.0 180.0+ 37.0 175.0+ 7.0+ 22.0 15.0+ 180.0+ 3.0
#> [531] 171.0+ 166.0+ 3.0+ 10.0 180.0+ 85.0 10.0 180.0+ 180.0+ 180.0+
#> [541] 108.0 180.0+ 125.0 180.0+ 6.0 9.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [551] 177.0+ 169.0 70.0 4.0 180.0+ 180.0+ 180.0+ 180.0+ 7.0+ 180.0+
#> [561] 8.0+ 16.0 180.0+ 180.0+ 180.0+ 177.0+ 180.0+ 2.0 128.0 167.0
#> [571] 3.0+ 180.0+ 38.0 180.0+ 90.0 180.0+ 180.0+ 89.0 4.0 19.0
#> [581] 30.0 2.0 180.0+ 180.0+ 180.0+ 1.0 12.0 16.0+ 5.0+ 4.0+
#> [591] 180.0+ 77.0 3.0 88.0 126.0 8.0 180.0+ 180.0+ 180.0+ 180.0+
#> [601] 3.0+ 180.0+ 174.0 6.0 70.0 180.0+ 14.0 13.0 180.0+ 180.0+
#> [611] 38.0 4.0 177.0 3.0+ 6.0+ 62.0 6.0+ 4.0 22.0 65.0
#> [621] 11.0 115.0 8.0+ 180.0+ 4.0 4.0 180.0+ 1.0+ 180.0+ 8.0
#> [631] 29.0 180.0+ 180.0+ 46.0 180.0+ 180.0+ 25.0 145.0 3.0 24.0
#> [641] 50.0 11.0 126.0 36.0 75.0 3.0+ 1.0 33.0 158.0 180.0+
#> [651] 168.0 169.0 52.0 7.0 0.5 180.0+ 50.0 2.0 179.0+ 8.0+
#> [661] 180.0+ 16.0 67.0 12.0 26.0 53.0 7.0+ 2.0 180.0+ 3.0
#>
#> $weights
#> NULL
#>
#> $offset
#> NULL
#>
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> surv.cindex
#> 0.8555257