Survival DNNSurv Learner
Source:R/learner_survivalmodels_surv_dnnsurv.R
mlr_learners_surv.dnnsurv.RdFits a neural network based on pseudo-conditional survival probabilities.
Calls survivalmodels::dnnsurv() from package 'survivalmodels'.
Details
Custom nets can be used in this learner either using the
survivalmodels::build_keras_net utility function or using keras.
The number of output channels should be of length 1 and number of input channels is
the number of features plus number of cuts.
Prediction types
This learner returns two prediction types:
distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated using the internalsurvivalmodels::predict.dnnsurv()function.crank: the expected mortality usingsurvivalmodels::surv_to_risk().
Meta Information
Task type: “surv”
Predict Types: “crank”, “distr”
Feature Types: “integer”, “numeric”
Required Packages: mlr3, mlr3proba, mlr3extralearners, survivalmodels, keras, pseudo, tensorflow, distr6
Parameters
| Id | Type | Default | Levels | Range |
| cuts | integer | 5 | \([1, \infty)\) | |
| cutpoints | untyped | - | - | |
| custom_model | untyped | - | - | |
| optimizer | character | adam | adadelta, adagrad, adamax, adam, nadam, rmsprop, sgd | - |
| lr | numeric | 0.02 | \([0, \infty)\) | |
| beta_1 | numeric | 0.9 | \([0, 1]\) | |
| beta_2 | numeric | 0.999 | \([0, 1]\) | |
| epsilon | numeric | - | \([0, \infty)\) | |
| decay | numeric | 0 | \([0, \infty)\) | |
| clipnorm | numeric | - | \((-\infty, \infty)\) | |
| clipvalue | numeric | - | \((-\infty, \infty)\) | |
| momentum | numeric | 0 | \([0, \infty)\) | |
| nesterov | logical | FALSE | TRUE, FALSE | - |
| loss_weights | untyped | - | - | |
| weighted_metrics | untyped | - | - | |
| early_stopping | logical | FALSE | TRUE, FALSE | - |
| min_delta | numeric | 0 | \([0, \infty)\) | |
| patience | integer | 0 | \([0, \infty)\) | |
| verbose | integer | 0 | \([0, 2]\) | |
| baseline | numeric | - | \((-\infty, \infty)\) | |
| restore_best_weights | logical | FALSE | TRUE, FALSE | - |
| batch_size | integer | 32 | \([1, \infty)\) | |
| epochs | integer | 10 | \([1, \infty)\) | |
| validation_split | numeric | 0 | \([0, 1]\) | |
| shuffle | logical | TRUE | TRUE, FALSE | - |
| sample_weight | untyped | - | - | |
| initial_epoch | integer | 0 | \([0, \infty)\) | |
| steps_per_epoch | integer | - | \([1, \infty)\) | |
| validation_steps | integer | - | \([1, \infty)\) | |
| steps | integer | - | \([0, \infty)\) | |
| callbacks | untyped | - | - | |
| rho | numeric | 0.95 | \((-\infty, \infty)\) | |
| global_clipnorm | numeric | - | \((-\infty, \infty)\) | |
| use_ema | logical | - | TRUE, FALSE | - |
| ema_momentum | numeric | 0.99 | \((-\infty, \infty)\) | |
| ema_overwrite_frequency | numeric | - | \((-\infty, \infty)\) | |
| jit_compile | logical | TRUE | TRUE, FALSE | - |
| initial_accumultator_value | numeric | 0.1 | \((-\infty, \infty)\) | |
| amsgrad | logical | FALSE | TRUE, FALSE | - |
| lr_power | numeric | -0.5 | \((-\infty, \infty)\) | |
| l1_regularization_strength | numeric | 0 | \([0, \infty)\) | |
| l2_regularization_strength | numeric | 0 | \([0, \infty)\) | |
| l2_shrinkage_regularization_strength | numeric | 0 | \([0, \infty)\) | |
| beta | numeric | 0 | \((-\infty, \infty)\) | |
| centered | logical | FALSE | TRUE, FALSE | - |
Installation
Package 'survivalmodels' is not on CRAN and has to be install from GitHub via
remotes::install_github("RaphaelS1/survivalmodels").
References
Zhao, Lili, Feng, Dai (2019). “Dnnsurv: Deep neural networks for survival analysis using pseudo values.” arXiv preprint arXiv:1908.02337.
See also
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvDNNSurv