Skip to contents

Generalized linear models with elastic net regularization. Calls glmnet::glmnet() from package glmnet.

Initial parameter values

  • family is set to "cox" and cannot be changed.

Prediction types

This learner returns three prediction types:

  1. lp: a vector containing the linear predictors (relative risk scores), where each score corresponds to a specific test observation. Calculated using glmnet::predict.coxnet().

  2. crank: same as lp.

  3. distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated using glmnet::survfit.coxnet(). Parameters stype and ctype relate to how lp predictions are transformed into survival predictions and are described in survival::survfit.coxph(). By default the Breslow estimator is used for computing the baseline hazard.

Caution: This learner is different to learners calling glmnet::cv.glmnet() in that it does not use the internal optimization of parameter lambda. Instead, lambda needs to be tuned by the user (e.g., via mlr3tuning). When lambda is tuned, the glmnet will be trained for each tuning iteration. While fitting the whole path of lambdas would be more efficient, as is done by default in glmnet::glmnet(), tuning/selecting the parameter at prediction time (using parameter s) is currently not supported in mlr3 (at least not in efficient manner). Tuning the s parameter is, therefore, currently discouraged.

When the data are i.i.d. and efficiency is key, we recommend using the respective auto-tuning counterpart in mlr_learners_surv.cv_glmnet(). However, in some situations this is not applicable, usually when data are imbalanced or not i.i.d. (longitudinal, time-series) and tuning requires custom resampling strategies (blocked design, stratification).

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.glmnet")

Meta Information

  • Task type: “surv”

  • Predict Types: “crank”, “distr”, “lp”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, mlr3proba, mlr3extralearners, glmnet

Parameters

IdTypeDefaultLevelsRange
alignmentcharacterlambdalambda, fraction-
alphanumeric1\([0, 1]\)
bignumeric9.9e+35\((-\infty, \infty)\)
devmaxnumeric0.999\([0, 1]\)
dfmaxinteger-\([0, \infty)\)
epsnumeric1e-06\([0, 1]\)
epsnrnumeric1e-08\([0, 1]\)
exactlogicalFALSETRUE, FALSE-
excludeuntyped--
exmxnumeric250\((-\infty, \infty)\)
fdevnumeric1e-05\([0, 1]\)
gammauntyped--
groupedlogicalTRUETRUE, FALSE-
interceptlogicalTRUETRUE, FALSE-
keeplogicalFALSETRUE, FALSE-
lambdauntyped--
lambda.min.rationumeric-\([0, 1]\)
lower.limitsuntyped-Inf-
maxitinteger100000\([1, \infty)\)
mnlaminteger5\([1, \infty)\)
mxitinteger100\([1, \infty)\)
mxitnrinteger25\([1, \infty)\)
newoffsetuntyped--
nlambdainteger100\([1, \infty)\)
offsetuntypedNULL-
parallellogicalFALSETRUE, FALSE-
penalty.factoruntyped--
pmaxinteger-\([0, \infty)\)
pminnumeric1e-09\([0, 1]\)
precnumeric1e-10\((-\infty, \infty)\)
predict.gammanumericgamma.1se\((-\infty, \infty)\)
relaxlogicalFALSETRUE, FALSE-
snumeric0.01\([0, \infty)\)
standardizelogicalTRUETRUE, FALSE-
threshnumeric1e-07\([0, \infty)\)
trace.itinteger0\([0, 1]\)
type.logisticcharacterNewtonNewton, modified.Newton-
type.multinomialcharacterungroupedungrouped, grouped-
upper.limitsuntypedInf-
stypeinteger2\([1, 2]\)
ctypeinteger-\([1, 2]\)

References

Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1–22. doi:10.18637/jss.v033.i01 .

See also

Author

be-marc

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvGlmnet

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method selected_features()

Returns the set of selected features as reported by glmnet::predict.glmnet() with type set to "nonzero".

Usage

LearnerSurvGlmnet$selected_features(lambda = NULL)

Arguments

lambda

(numeric(1))
Custom lambda, defaults to the active lambda depending on parameter set.

Returns

(character()) of feature names.


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerSurvGlmnet$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = mlr3::lrn("surv.glmnet")
print(learner)
#> <LearnerSurvGlmnet:surv.glmnet>: Regularized Generalized Linear Model
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3proba, mlr3extralearners, glmnet
#> * Predict Types:  [crank], distr, lp
#> * Feature Types: logical, integer, numeric
#> * Properties: selected_features, weights

# Define a Task
task = mlr3::tsk("grace")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> $model
#> 
#> Call:  (if (cv) glmnet::cv.glmnet else glmnet::glmnet)(x = data, y = target,      family = "cox") 
#> 
#>    Df  %Dev   Lambda
#> 1   0  0.00 0.176700
#> 2   1  0.61 0.161000
#> 3   2  1.54 0.146700
#> 4   2  2.40 0.133700
#> 5   3  4.86 0.121800
#> 6   3  7.58 0.111000
#> 7   3  9.61 0.101100
#> 8   3 11.19 0.092120
#> 9   4 12.48 0.083940
#> 10  4 13.58 0.076480
#> 11  4 14.48 0.069690
#> 12  5 15.24 0.063500
#> 13  5 15.89 0.057860
#> 14  5 16.44 0.052720
#> 15  5 16.91 0.048030
#> 16  6 17.32 0.043770
#> 17  6 17.70 0.039880
#> 18  6 18.01 0.036340
#> 19  6 18.29 0.033110
#> 20  6 18.52 0.030170
#> 21  6 18.71 0.027490
#> 22  6 18.87 0.025040
#> 23  6 19.01 0.022820
#> 24  6 19.13 0.020790
#> 25  6 19.23 0.018950
#> 26  6 19.31 0.017260
#> 27  6 19.38 0.015730
#> 28  6 19.44 0.014330
#> 29  6 19.49 0.013060
#> 30  6 19.54 0.011900
#> 31  6 19.57 0.010840
#> 32  6 19.60 0.009878
#> 33  6 19.63 0.009001
#> 34  6 19.65 0.008201
#> 35  6 19.67 0.007472
#> 36  6 19.68 0.006809
#> 37  6 19.69 0.006204
#> 38  6 19.70 0.005653
#> 39  6 19.71 0.005150
#> 40  6 19.72 0.004693
#> 41  6 19.72 0.004276
#> 42  6 19.73 0.003896
#> 43  6 19.73 0.003550
#> 44  6 19.74 0.003235
#> 
#> $x
#>        age los revasc revascdays stchange sysbp
#>   [1,]  32   5      1          0        1   121
#>   [2,]  35   5      1          2        0   172
#>   [3,]  35  10      1          9        0   106
#>   [4,]  35   2      0        180        0   121
#>   [5,]  38  13      1          0        1   161
#>   [6,]  38   2      0        115        0   150
#>   [7,]  36   1      0        180        1   155
#>   [8,]  35   0      0        180        1   119
#>   [9,]  38  12      1          8        1   120
#>  [10,]  36   5      1          0        1   115
#>  [11,]  38  16      1         10        0   160
#>  [12,]  38  12      1         11        1    92
#>  [13,]  40  12      1          9        0   153
#>  [14,]  42   3      1          1        1   130
#>  [15,]  37   1      1          0        1   146
#>  [16,]  40   2      1          1        1   148
#>  [17,]  38   5      1          3        0   125
#>  [18,]  40   6      0        180        1   138
#>  [19,]  42   2      0        180        0   100
#>  [20,]  43   3      1          0        1   100
#>  [21,]  41   2      1          1        0   166
#>  [22,]  40   1      1          0        1   145
#>  [23,]  42   4      0        180        0   162
#>  [24,]  42  15      1         13        1   125
#>  [25,]  40   3      1          1        0   170
#>  [26,]  43   2      1          1        1   116
#>  [27,]  42   2      0        180        1   124
#>  [28,]  44   5      1          1        0   170
#>  [29,]  41  10      1          8        0   150
#>  [30,]  44   3      0        180        0   141
#>  [31,]  41  13      1          1        0   140
#>  [32,]  45   6      0        180        1   170
#>  [33,]  41   5      1          4        1   141
#>  [34,]  43   2      0        180        1   140
#>  [35,]  45   2      0        180        1   140
#>  [36,]  46   2      1          1        0   126
#>  [37,]  48  15      0        180        1   160
#>  [38,]  44   3      1          0        1   180
#>  [39,]  46   7      1          2        0   166
#>  [40,]  45   4      1          0        0   124
#>  [41,]  43  10      0        180        0   185
#>  [42,]  46  13      1         10        0   100
#>  [43,]  47   4      1          3        1   160
#>  [44,]  45   8      1          0        1   117
#>  [45,]  45   5      0          5        0   141
#>  [46,]  46   5      1          3        0   130
#>  [47,]  46   4      0        180        1   121
#>  [48,]  44   2      0        180        0   142
#>  [49,]  46  15      0        180        1   120
#>  [50,]  45   9      1          0        1   145
#>  [51,]  48  12      1         11        0   200
#>  [52,]  47   9      1          6        0   170
#>  [53,]  49   4      0        180        0   117
#>  [54,]  47  10      0         10        1   140
#>  [55,]  50   1      1          0        1   129
#>  [56,]  48   2      1          0        0   184
#>  [57,]  47   7      0        180        0   145
#>  [58,]  49   7      1          7        1   110
#>  [59,]  46   9      1          9        1   122
#>  [60,]  50   7      0        180        1   110
#>  [61,]  49   2      0          2        0   105
#>  [62,]  47   2      0        180        0   150
#>  [63,]  49  23      0        179        1   112
#>  [64,]  46   6      1          0        1   156
#>  [65,]  52   2      0        180        1   170
#>  [66,]  49   7      1          4        1    90
#>  [67,]  47   8      0        180        0   160
#>  [68,]  47   6      0        180        1   162
#>  [69,]  51   8      0        180        1   140
#>  [70,]  52   2      0        180        0   155
#>  [71,]  46   3      0        180        1   120
#>  [72,]  46   1      1          1        0   145
#>  [73,]  53   8      0         36        1   160
#>  [74,]  48  17      1         10        0   111
#>  [75,]  47   2      1          1        0   110
#>  [76,]  52   4      1          4        0   152
#>  [77,]  49   9      1          3        0   102
#>  [78,]  49  15      0        180        1   160
#>  [79,]  54  17      1         12        1   102
#>  [80,]  53   5      0         77        0   159
#>  [81,]  53   7      1          0        0   199
#>  [82,]  54   6      1          3        0   129
#>  [83,]  51   3      1          1        0   140
#>  [84,]  50   2      0          5        1   106
#>  [85,]  50  14      1         13        0   170
#>  [86,]  48   3      1          2        0   150
#>  [87,]  51  25      1          1        0   202
#>  [88,]  53   4      0          4        0   140
#>  [89,]  52  14      1          7        1   200
#>  [90,]  53   4      1          0        1   156
#>  [91,]  51  13      0         99        1   160
#>  [92,]  54   9      1          0        1   138
#>  [93,]  49  16      0         16        0   125
#>  [94,]  55   3      1          1        0   150
#>  [95,]  54  23      1         10        0   131
#>  [96,]  52   7      1          2        0   154
#>  [97,]  54   9      1          1        0   130
#>  [98,]  55   4      1          2        0   150
#>  [99,]  52   4      0        180        1   180
#> [100,]  51  13      1         11        0   145
#> [101,]  50   5      1          4        1   150
#> [102,]  54   4      1          0        1   121
#> [103,]  52   4      0        180        0   183
#> [104,]  49   6      1          0        1   130
#> [105,]  49   1      0          1        1   110
#> [106,]  50   7      1          1        0   156
#> [107,]  53   9      0          9        1    95
#> [108,]  53   8      1          0        1   130
#> [109,]  50   7      1          0        1   127
#> [110,]  56   4      1          1        1   130
#> [111,]  55   2      0          2        0   145
#> [112,]  54   1      0        180        0   162
#> [113,]  54   7      1          0        1   100
#> [114,]  56   2      0        180        0   132
#> [115,]  55   5      1          4        1   120
#> [116,]  52   8      0        180        0   119
#> [117,]  53  18      1          9        1   150
#> [118,]  55   6      0        180        0   170
#> [119,]  52  16      0         16        0   152
#> [120,]  52  16      1         14        0   170
#> [121,]  53  15      0         15        1    90
#> [122,]  55   6      0        180        1   100
#> [123,]  55   6      1          5        1   138
#> [124,]  55   2      0        134        1   140
#> [125,]  54   3      0        180        0   128
#> [126,]  56   3      0          8        1   139
#> [127,]  54   2      1          1        0   135
#> [128,]  52   9      1          3        0   170
#> [129,]  57   1      0        180        1   156
#> [130,]  52   2      0        180        0   140
#> [131,]  55  11      1          7        0   104
#> [132,]  53   3      1          0        1   200
#> [133,]  57  10      0        180        1   170
#> [134,]  54   5      0        180        1   108
#> [135,]  55   3      1          1        1   156
#> [136,]  57   0      0          0        1   150
#> [137,]  53  21      1         13        1   130
#> [138,]  59   3      1          1        0   172
#> [139,]  53  15      1         10        1   130
#> [140,]  54  17      1          8        1   227
#> [141,]  55  13      0        166        1   140
#> [142,]  56   5      0          5        1   150
#> [143,]  57   4      1          2        1   185
#> [144,]  53   4      0        147        1   145
#> [145,]  53   7      1          0        1   120
#> [146,]  57  11      1         10        1   129
#> [147,]  55   3      1          2        0   140
#> [148,]  55   5      0          5        1   131
#> [149,]  54   7      1          0        1   141
#> [150,]  56   4      0          4        0   164
#> [151,]  59  15      1         10        0   140
#> [152,]  58   1      1          1        1   200
#> [153,]  55   2      0          2        0   106
#> [154,]  59   9      1          1        1   125
#> [155,]  57   1      0        180        0   148
#> [156,]  58   4      1          0        1   160
#> [157,]  57   2      0          2        1   120
#> [158,]  60   5      1          1        0   138
#> [159,]  57   5      0        180        1   130
#> [160,]  58  11      1          9        1   124
#> [161,]  55   5      1          0        1   160
#> [162,]  59   6      1          0        1   140
#> [163,]  59   5      0        180        1   155
#> [164,]  59   4      1          0        1   152
#> [165,]  61   9      0          9        1   160
#> [166,]  58   4      1          3        0   120
#> [167,]  60   0      1          0        1    80
#> [168,]  59   2      1          1        0   140
#> [169,]  58   8      0        161        1   140
#> [170,]  61   4      1          3        0   151
#> [171,]  61   9      1          8        0   150
#> [172,]  61   3      1          2        1   102
#> [173,]  58   1      0          1        1   100
#> [174,]  57  13      1         10        0   110
#> [175,]  58  10      0         10        1   150
#> [176,]  57   4      1          3        0   138
#> [177,]  57  11      0        180        1   150
#> [178,]  61   3      0         17        0   143
#> [179,]  58  19      1         13        1   140
#> [180,]  56  13      1          6        1   158
#> [181,]  56  18      1         11        1   165
#> [182,]  55   4      1          3        1   160
#> [183,]  58  11      0        172        1   135
#> [184,]  61   4      1          0        1   115
#> [185,]  56   8      1          8        0   120
#> [186,]  59  11      1          8        1   190
#> [187,]  57   1      0          1        0   126
#> [188,]  57  15      1         13        1   110
#> [189,]  58   5      1          1        1   135
#> [190,]  59  10      0        180        0   160
#> [191,]  61   8      0         77        0   120
#> [192,]  58   8      1          5        0   152
#> [193,]  62  10      1          0        1   153
#> [194,]  57   3      1          0        0   100
#> [195,]  61  18      0        170        0   140
#> [196,]  61  28      1          7        0   133
#> [197,]  58   8      1          3        1   150
#> [198,]  61   7      0          7        1   150
#> [199,]  60   7      0          7        0   147
#> [200,]  59  13      1          2        0   198
#> [201,]  57  12      1          9        1   120
#> [202,]  60  17      1          8        1   140
#> [203,]  62   4      1          3        0   173
#> [204,]  59   1      0        180        0   155
#> [205,]  59  16      1          9        1   133
#> [206,]  63   6      0         28        1   120
#> [207,]  61  13      0         13        0   120
#> [208,]  61   5      0          5        1   110
#> [209,]  61   5      0          5        1   160
#> [210,]  58  11      1          9        0   179
#> [211,]  57   2      1          1        0   159
#> [212,]  62   1      1          0        1   172
#> [213,]  58   7      0        180        1   150
#> [214,]  63   3      1          1        0   180
#> [215,]  63   1      0        180        1   130
#> [216,]  61   7      0        180        0   135
#> [217,]  63   4      1          3        0   222
#> [218,]  62   3      0        180        1   105
#> [219,]  63   4      0        180        1   190
#> [220,]  63  15      1         10        1   126
#> [221,]  64   4      0        180        0   130
#> [222,]  63   4      1          1        0   155
#> [223,]  59   8      0        180        1   140
#> [224,]  61   9      1          9        1   150
#> [225,]  58   9      1          9        0   110
#> [226,]  62   7      0          7        0   150
#> [227,]  59   1      0         22        1   162
#> [228,]  58   2      0        180        0   127
#> [229,]  60   7      1          5        1   141
#> [230,]  59   5      1          1        0   148
#> [231,]  65  13      0        180        1   100
#> [232,]  63   1      0          1        0   130
#> [233,]  62   6      0        180        0   170
#> [234,]  60   3      0          3        0   168
#> [235,]  63  12      1         10        0   200
#> [236,]  59  10      0        180        1   130
#> [237,]  61   6      1          1        1   117
#> [238,]  64  12      1         11        0   160
#> [239,]  64   6      1          0        1   140
#> [240,]  63  10      1          0        1   148
#> [241,]  66   3      1          1        0   127
#> [242,]  61  10      1          2        1   194
#> [243,]  64  32      1          9        1   160
#> [244,]  63  12      1          9        0   114
#> [245,]  63   7      0        180        0   120
#> [246,]  65   8      1          0        0   168
#> [247,]  65  10      1          8        1   120
#> [248,]  60   6      0        180        0   130
#> [249,]  64   9      0        180        0   150
#> [250,]  61   4      0        180        1   113
#> [251,]  64   7      0        180        1   120
#> [252,]  66   6      1          1        1   130
#> [253,]  63  12      0         12        1   150
#> [254,]  65   3      1          0        1    80
#> [255,]  63   5      1          4        0   170
#> [256,]  63   2      1          1        0   180
#> [257,]  67  11      0         11        1   100
#> [258,]  64   2      0          2        0   201
#> [259,]  66  18      1          5        0   142
#> [260,]  66  16      1         11        1   169
#> [261,]  62   9      0        180        0   145
#> [262,]  61  14      1          5        0   140
#> [263,]  61  15      1         10        0   130
#> [264,]  63   9      1          8        1   160
#> [265,]  64  19      1          8        1   160
#> [266,]  65   8      1          0        1   140
#> [267,]  65  15      1         11        1   160
#> [268,]  64  13      1         12        1   150
#> [269,]  64   6      1          0        1   125
#> [270,]  66   7      1          0        1   115
#> [271,]  64  14      1         13        1   150
#> [272,]  65   3      0          3        0   105
#> [273,]  64   0      0          0        1   148
#> [274,]  67   4      1          3        0   130
#> [275,]  66   3      1          0        1   135
#> [276,]  65   2      1          1        1   170
#> [277,]  68   1      0        180        1   166
#> [278,]  64  10      1          9        1   110
#> [279,]  63   7      1          0        0   162
#> [280,]  67   8      1          1        1   130
#> [281,]  68   5      0          5        1    90
#> [282,]  63  10      0         16        1   160
#> [283,]  64   1      0          1        1   120
#> [284,]  68  18      0        180        1   260
#> [285,]  65  17      1         14        1   100
#> [286,]  63   8      1          1        1   162
#> [287,]  65  18      1          3        0   120
#> [288,]  63  10      0         18        1   130
#> [289,]  67  11      0         11        0   150
#> [290,]  68  11      0        180        0   160
#> [291,]  65  15      1         12        1   150
#> [292,]  66  11      1          0        0   100
#> [293,]  69  12      0         15        1   140
#> [294,]  66  15      1         13        1   160
#> [295,]  63   2      0        180        0   150
#> [296,]  65  11      1          6        0   130
#> [297,]  69   6      0        180        1   100
#> [298,]  66   9      1          8        0   130
#> [299,]  63   8      0        180        1   120
#> [300,]  65   8      1          0        1    90
#> [301,]  66   3      0          3        1   138
#> [302,]  69   1      1          0        0   170
#> [303,]  65   1      1          0        0   133
#> [304,]  67   7      1          4        1   130
#> [305,]  67   2      0        180        0   184
#> [306,]  65  10      1          1        1   148
#> [307,]  66  19      1         12        1   150
#> [308,]  67  12      1         12        0   160
#> [309,]  69   6      0         99        1   140
#> [310,]  70  15      1         12        1   132
#> [311,]  64  11      0         11        0   125
#> [312,]  64   4      0        180        1   140
#> [313,]  64   0      1          0        1   118
#> [314,]  67   2      0         18        0   131
#> [315,]  66   4      0        180        0   177
#> [316,]  69   4      1          3        1   150
#> [317,]  65  13      1         12        1   130
#> [318,]  64  21      0         21        1   155
#> [319,]  65   1      0          1        1   120
#> [320,]  68  18      1          0        1   160
#> [321,]  65   6      0        101        1   115
#> [322,]  68   4      0          4        1   190
#> [323,]  70   7      1          0        1   190
#> [324,]  71  20      1          0        1   160
#> [325,]  67   2      0        180        0   128
#> [326,]  69   8      0        180        1   153
#> [327,]  70  14      0        171        0   166
#> [328,]  66   4      0        180        0   130
#> [329,]  67  10      1          9        0   200
#> [330,]  67   6      1          4        0   130
#> [331,]  65   2      0        180        0   130
#> [332,]  68   7      1          0        1   150
#> [333,]  69   3      1          2        0   151
#> [334,]  67  14      1         13        0   130
#> [335,]  71   7      0          7        0   230
#> [336,]  66   2      0          2        1   228
#> [337,]  71   3      0        103        0   133
#> [338,]  69   3      0          3        1   130
#> [339,]  70  22      1         13        0   103
#> [340,]  67   1      0         36        1   104
#> [341,]  67   5      0          5        0   130
#> [342,]  68   6      0        180        0   145
#> [343,]  69   8      1          5        1   195
#> [344,]  69   6      1          4        1   174
#> [345,]  72   3      1          0        1   132
#> [346,]  72   7      0          7        1   110
#> [347,]  69   8      1          7        1   108
#> [348,]  66   2      1          1        0   123
#> [349,]  69  19      0        180        0   130
#> [350,]  68  18      0         18        1   100
#> [351,]  69  11      1          0        1   120
#> [352,]  69   4      1          3        0   132
#> [353,]  68   2      0          7        1   130
#> [354,]  69   8      1          2        0   121
#> [355,]  67  13      1          9        0   130
#> [356,]  70   9      0        180        1   142
#> [357,]  72   5      1          4        0   170
#> [358,]  68   3      0         19        0   135
#> [359,]  67  12      1          8        0   120
#> [360,]  67   1      0          1        1    60
#> [361,]  67   4      0         60        1   136
#> [362,]  67   8      1          0        1   130
#> [363,]  68  10      1          8        1   160
#> [364,]  66  24      1         13        0   130
#> [365,]  70  35      1          0        1   105
#> [366,]  72  30      1          0        1   145
#> [367,]  70   7      0          7        0   102
#> [368,]  68   7      1          2        0   135
#> [369,]  73  20      1          0        1   170
#> [370,]  69  10      1          6        1   120
#> [371,]  70  11      0        180        1   210
#> [372,]  67   9      0        180        0   158
#> [373,]  73  13      0        152        1   130
#> [374,]  70   5      0        180        0   150
#> [375,]  72   2      0          2        1   100
#> [376,]  72   6      1          5        0   115
#> [377,]  69   3      0        180        0   220
#> [378,]  71   3      1          2        0   150
#> [379,]  72   5      0         28        0   120
#> [380,]  71   5      0        180        0   191
#> [381,]  73   6      0        180        1   117
#> [382,]  69  16      1         10        1   140
#> [383,]  69   8      1          1        0   164
#> [384,]  70   4      0        180        0   180
#> [385,]  69   1      1          0        0   155
#> [386,]  72   8      1          1        1   150
#> [387,]  71   2      1          0        1   180
#> [388,]  70   3      0          3        1   159
#> [389,]  70  13      1          9        0   100
#> [390,]  73   0      0        180        1   161
#> [391,]  74   8      1          0        1    85
#> [392,]  73   4      0        180        1   154
#> [393,]  74  20      0         20        1   180
#> [394,]  71  20      1         10        0   140
#> [395,]  70   5      1          0        1   190
#> [396,]  71  17      1         11        0   160
#> [397,]  71   8      1          7        0   149
#> [398,]  71   3      1          2        1   190
#> [399,]  73  10      1          8        0   106
#> [400,]  69  12      1          1        1   149
#> [401,]  70  26      1         11        1   120
#> [402,]  74   4      0          4        0   120
#> [403,]  73   4      0         58        1   160
#> [404,]  72   5      1          3        1   160
#> [405,]  70   3      0        180        1   154
#> [406,]  73   6      0        180        0   110
#> [407,]  72  15      1          0        1   150
#> [408,]  72   8      1          0        1   140
#> [409,]  73  17      1         11        0   140
#> [410,]  69   2      1          1        1    80
#> [411,]  70   4      1          0        1   140
#> [412,]  71  14      1         13        1   170
#> [413,]  72  10      1          8        1   153
#> [414,]  72  15      1         13        0   156
#> [415,]  70   8      0          8        0   120
#> [416,]  71  10      1          9        1   120
#> [417,]  75   1      0          1        0   133
#> [418,]  75   2      1          1        0   145
#> [419,]  73  10      1          9        1   146
#> [420,]  72  10      1          9        1   160
#> [421,]  73  10      1         10        1   120
#> [422,]  74  15      1          9        1   179
#> [423,]  73   1      0          1        1    80
#> [424,]  75   9      1          7        0   140
#> [425,]  75  13      1          1        1   130
#> [426,]  71   4      0          4        0   134
#> [427,]  72  15      1         12        1   120
#> [428,]  72   7      0         57        1   145
#> [429,]  73  10      0        180        0   162
#> [430,]  72  11      0         11        1   140
#> [431,]  70   3      0          3        0   150
#> [432,]  73  12      1         12        1   140
#> [433,]  72   2      0        180        0   120
#> [434,]  71   3      1          0        0   144
#> [435,]  73   5      0        180        0   126
#> [436,]  73   4      0        180        0   124
#> [437,]  74  34      1          8        1   233
#> [438,]  71  32      1         12        1   107
#> [439,]  72   5      0        180        0   154
#> [440,]  77  11      0         11        1   150
#> [441,]  77   4      0          4        0   185
#> [442,]  75   3      1          1        0   180
#> [443,]  73  15      0         15        1   160
#> [444,]  73  10      1         10        0   124
#> [445,]  74   7      0        180        1   150
#> [446,]  76   1      0        180        0   114
#> [447,]  74   2      1          1        0   140
#> [448,]  73   6      0          6        1   114
#> [449,]  75  23      1         14        1   110
#> [450,]  74   2      0        180        0   190
#> [451,]  72   4      0         85        1   120
#> [452,]  72   4      1          3        0   160
#> [453,]  73   4      1          3        1   125
#> [454,]  75   4      1          0        1   122
#> [455,]  73  13      1         11        0   195
#> [456,]  75  12      0         12        1   160
#> [457,]  74   8      1          0        1   105
#> [458,]  76   4      0          4        1   155
#> [459,]  75   1      0          1        1   125
#> [460,]  74   2      0        180        0   111
#> [461,]  73   0      0        180        0   156
#> [462,]  78  12      1         11        1   160
#> [463,]  76  44      1         10        0   105
#> [464,]  76   5      0        180        0   185
#> [465,]  74  10      1          0        1   135
#> [466,]  76   5      1          0        1   167
#> [467,]  74   8      1          8        1   170
#> [468,]  75   9      0        180        1   140
#> [469,]  77  12      0        180        0   130
#> [470,]  77   1      1          0        1    90
#> [471,]  73   7      1          0        0   174
#> [472,]  74   6      0         79        1   140
#> [473,]  74   9      1          8        0   200
#> [474,]  75   6      0        180        0   150
#> [475,]  74   2      1          0        1   130
#> [476,]  78  18      0         18        1   144
#> [477,]  74   2      0        180        0   100
#> [478,]  78   7      0          7        1   133
#> [479,]  74  15      0        180        1   172
#> [480,]  74   7      0          7        0   161
#> [481,]  76  13      1          1        1   170
#> [482,]  78  32      1          9        1   198
#> [483,]  80  10      1          6        1   147
#> [484,]  78   0      0        180        1   212
#> [485,]  75   5      0        119        1   150
#> [486,]  75  12      1          1        1   120
#> [487,]  80   8      0          8        1   120
#> [488,]  75  13      1          6        0   150
#> [489,]  74  10      1          8        0   135
#> [490,]  76   1      0          1        1    83
#> [491,]  79   4      0         80        0   145
#> [492,]  78  12      1          9        0   150
#> [493,]  78   2      1          1        0   130
#> [494,]  75  11      1          4        0   162
#> [495,]  76   7      0         29        1   150
#> [496,]  77  24      0         24        1   160
#> [497,]  80   9      0         23        1   128
#> [498,]  78   6      1          0        1   240
#> [499,]  76   3      1          0        1   140
#> [500,]  78  11      1          1        1   140
#> [501,]  79  11      0        180        0   160
#> [502,]  78  14      1          0        1   140
#> [503,]  76   4      0          4        1   160
#> [504,]  79   4      0          4        1   125
#> [505,]  76  12      1         10        1   127
#> [506,]  77   6      0          6        1   107
#> [507,]  80   3      1          0        1   120
#> [508,]  75   2      1          1        1   204
#> [509,]  78  11      0        180        1   135
#> [510,]  76   1      0          1        1   140
#> [511,]  77  31      1          3        1   161
#> [512,]  79   3      0          3        0   120
#> [513,]  77   7      0        180        1   170
#> [514,]  79   4      1          0        1   120
#> [515,]  81   1      0        180        0   120
#> [516,]  82   5      0          8        1   120
#> [517,]  80  40      1          0        1   138
#> [518,]  80   6      0        173        1   160
#> [519,]  79   1      0         37        1   140
#> [520,]  81   3      0        180        0   184
#> [521,]  78  15      0         15        0   165
#> [522,]  80   5      1          1        1   108
#> [523,]  78   4      0        180        0   175
#> [524,]  79   3      0          3        1   101
#> [525,]  78  26      1          5        0   194
#> [526,]  76   1      0        166        0   131
#> [527,]  81   4      1          1        1   104
#> [528,]  78  20      1          0        1   109
#> [529,]  78   3      1          1        1   152
#> [530,]  77   5      0         85        0   188
#> [531,]  80   2      1          1        0   168
#> [532,]  78   2      0        180        0   148
#> [533,]  80   5      0          5        1   130
#> [534,]  82   1      1          0        1    82
#> [535,]  79  10      0        180        1   150
#> [536,]  78  12      0        180        0   134
#> [537,]  79   1      0        125        0   193
#> [538,]  82  21      1          2        0   155
#> [539,]  84  22      1         10        0   180
#> [540,]  83   9      1          5        1   170
#> [541,]  82   5      0        180        0   110
#> [542,]  83   5      0        180        0   148
#> [543,]  79   7      1          6        0   130
#> [544,]  83   4      0        103        0    97
#> [545,]  81  11      1          8        0   160
#> [546,]  80  11      1          8        0   170
#> [547,]  78  23      1         10        1   145
#> [548,]  79   4      0          4        1   183
#> [549,]  78   9      1          4        1   120
#> [550,]  82   8      1          1        0   128
#> [551,]  80   7      1          0        1   146
#> [552,]  84   5      1          1        1    85
#> [553,]  83   8      0          8        0   115
#> [554,]  81  16      0         16        1   110
#> [555,]  80   6      1          0        1   150
#> [556,]  80  11      1          8        0   110
#> [557,]  81   8      0        180        0   146
#> [558,]  80   8      1          7        0   160
#> [559,]  79   7      0        177        0   197
#> [560,]  85   4      0        180        0    90
#> [561,]  81   2      1          1        0   198
#> [562,]  82   6      0        128        1   100
#> [563,]  84   4      0        167        0   198
#> [564,]  80   3      1          1        1   230
#> [565,]  82  23      1          0        0   110
#> [566,]  84   5      0        180        1   203
#> [567,]  84   4      0          4        1    85
#> [568,]  81   1      0          1        1   150
#> [569,]  83   3      0        180        0   174
#> [570,]  79   9      1          8        0   150
#> [571,]  85   3      1          2        1   160
#> [572,]  84   4      0         89        1   129
#> [573,]  80   6      0         71        1   189
#> [574,]  83   1      0          1        1   100
#> [575,]  82  19      0         19        0   120
#> [576,]  80  30      1         13        0   220
#> [577,]  83   9      0        180        0   198
#> [578,]  79  14      1          0        0   110
#> [579,]  83   3      0        114        0    98
#> [580,]  82   0      0          2        1   100
#> [581,]  85   9      1          6        1   160
#> [582,]  83   1      0        180        0   160
#> [583,]  81   4      0          4        0   175
#> [584,]  81   1      0          1        1   145
#> [585,]  81  12      0         12        1   163
#> [586,]  82  16      1          8        0   103
#> [587,]  81   4      0          4        0   160
#> [588,]  86  12      0        180        1   120
#> [589,]  83  12      1          2        1   170
#> [590,]  82   3      1          2        0   130
#> [591,]  82  15      1          0        0   183
#> [592,]  86   8      0          8        1   132
#> [593,]  84   6      0        165        0   145
#> [594,]  86   3      0          3        1   140
#> [595,]  84   3      0        180        1   120
#> [596,]  81   2      1          0        1   118
#> [597,]  81   4      0        180        0   160
#> [598,]  83   9      0        180        1   149
#> [599,]  82   1      0        180        1   193
#> [600,]  83   4      0          4        0   130
#> [601,]  87   2      0          5        1   137
#> [602,]  86  12      1          0        1   132
#> [603,]  82  14      1         11        1   103
#> [604,]  86   6      1          0        1   140
#> [605,]  83  19      0         43        0   150
#> [606,]  84   3      1          2        0   125
#> [607,]  83  10      1          0        1   190
#> [608,]  84   3      0          3        1   121
#> [609,]  83  13      1         12        0   170
#> [610,]  84   9      0         92        1   110
#> [611,]  84   3      0        180        1   170
#> [612,]  86   4      0         38        1   122
#> [613,]  82   4      0          4        0   130
#> [614,]  86  13      0        177        0   163
#> [615,]  85   3      0          3        1   113
#> [616,]  86   6      0          6        1   117
#> [617,]  84  13      0         62        1   100
#> [618,]  83  20      1          3        1   150
#> [619,]  88   4      0          4        1   115
#> [620,]  86   6      0         46        0   173
#> [621,]  88   2      0        180        1    68
#> [622,]  87   8      0          8        1   157
#> [623,]  86  15      1          8        1   109
#> [624,]  89   4      0          4        1   153
#> [625,]  89   5      0        119        1   140
#> [626,]  87   6      0        180        1   110
#> [627,]  87   1      0          1        0   170
#> [628,]  84   8      0        180        1   119
#> [629,]  85   8      0          8        1   136
#> [630,]  84   2      0        110        1   174
#> [631,]  87  29      0         29        1    97
#> [632,]  87  15      1          9        1   138
#> [633,]  90  14      0         14        1   100
#> [634,]  86   4      0        180        1   145
#> [635,]  91   8      0          8        0   100
#> [636,]  87   2      0        180        0   160
#> [637,]  87   6      1          0        0   125
#> [638,]  86   3      1          0        1    80
#> [639,]  88   7      0         24        0   119
#> [640,]  90  11      1         10        1   186
#> [641,]  87   6      0        126        1   168
#> [642,]  86  10      0        180        1   137
#> [643,]  90   4      1          0        0   121
#> [644,]  91   1      0          1        1    74
#> [645,]  87  43      0        178        1   130
#> [646,]  89   3      1          1        1   160
#> [647,]  88   5      0        158        0   100
#> [648,]  89  12      1          0        1   130
#> [649,]  91   5      0        169        1   176
#> [650,]  89  52      0         52        1   130
#> [651,]  92   7      0          7        1   110
#> [652,]  91   0      0          0        0     0
#> [653,]  89  14      0        180        1    84
#> [654,]  90  18      0        180        0   188
#> [655,]  91   4      1          0        1   120
#> [656,]  90  19      1         11        1   129
#> [657,]  94   6      0         50        0    78
#> [658,]  90   1      0          1        1   118
#> [659,]  93   8      0        179        1   110
#> [660,]  92   4      0         76        1   149
#> [661,]  90   3      0         67        0   162
#> [662,]  96   3      0         12        1    97
#> [663,]  95   8      1          5        1   150
#> [664,]  91  12      0         53        1   212
#> [665,]  91   7      0          7        0   135
#> [666,]  93   0      1          0        1   122
#> [667,]  92   2      0          2        0   112
#> [668,]  93   4      0        180        1   135
#> [669,]  96   3      1          0        1   104
#> [670,]  96  15      1          0        1   140
#> 
#> $y
#>   [1]   5.0+   5.0+ 180.0+ 180.0+ 180.0+ 115.0  180.0+ 180.0+  12.0    5.0+
#>  [11] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+   2.0+   5.0+ 180.0+ 180.0+   3.0 
#>  [21] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+   2.0+ 180.0+ 155.0+ 180.0+ 180.0+
#>  [31] 180.0+ 180.0+   5.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#>  [41] 180.0+ 180.0+ 180.0+ 180.0+   5.0+   5.0+ 180.0+ 180.0+ 180.0+ 177.0+
#>  [51] 180.0+ 180.0+ 180.0+  10.0+ 172.0+ 180.0+ 180.0+   7.0  180.0+ 180.0+
#>  [61]   2.0  180.0+ 179.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#>  [71] 180.0+ 180.0+  36.0   88.0+ 180.0+   4.0+ 180.0+ 180.0+ 180.0+  77.0 
#>  [81] 180.0+ 180.0+ 180.0+   5.0  180.0+ 180.0+ 180.0+   4.0+  85.0  166.0+
#>  [91]  99.0  180.0+  16.0+ 180.0+ 152.0+   7.0+ 180.0+ 180.0+ 180.0+  13.0+
#> [101] 171.0+ 180.0+ 180.0+   6.0+   1.0  180.0+   9.0+ 180.0+ 180.0+ 180.0+
#> [111]   2.0  180.0+   7.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+  16.0+  16.0 
#> [121]  15.0+ 180.0+ 180.0+ 134.0+ 180.0+   8.0  180.0+ 180.0+ 180.0+ 180.0+
#> [131] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+   0.5  180.0+ 180.0+ 180.0+ 171.0+
#> [141] 166.0+   5.0+   4.0+ 147.0+ 180.0+ 180.0+ 180.0+   5.0+ 180.0+   4.0+
#> [151] 180.0+   1.0    2.0+ 180.0+ 180.0+ 180.0+   2.0  180.0+ 180.0+ 180.0+
#> [161] 180.0+  64.0  180.0+ 180.0+   9.0+ 180.0+   0.5  180.0+ 161.0+ 180.0+
#> [171] 180.0+   3.0    1.0  180.0+  10.0+ 180.0+ 180.0+  17.0   19.0  180.0+
#> [181] 180.0+ 180.0+ 172.0+ 180.0+   8.0  180.0+   1.0+  15.0  180.0+ 180.0+
#> [191]  77.0    8.0+ 180.0+ 180.0+ 170.0   94.0  180.0+   7.0    7.0+ 180.0+
#> [201] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+  28.0   13.0+   5.0    5.0+ 180.0+
#> [211] 180.0+   1.0  180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [221] 180.0+   4.0+ 180.0+ 180.0+   9.0    7.0+  22.0  180.0+  84.0  180.0+
#> [231] 180.0+   1.0  180.0+   3.0+ 180.0+ 180.0+ 180.0+  12.0  180.0+ 180.0+
#> [241]   3.0+  88.0  180.0+  12.0  180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [251] 180.0+ 180.0+  12.0    3.0  180.0+ 180.0+  11.0+   2.0+  18.0+ 180.0+
#> [261] 180.0+ 180.0+ 180.0+ 180.0+ 103.0   15.0  180.0+  13.0  180.0+ 179.0+
#> [271]  14.0+   3.0    0.5+ 180.0+   3.0+ 175.0+ 180.0+ 180.0+   7.0+   8.0 
#> [281]   5.0   16.0    1.0  180.0+ 180.0+ 180.0+ 123.0+  18.0   11.0+ 180.0+
#> [291]  15.0+ 180.0+  15.0  180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+   8.0+
#> [301]   3.0  175.0  180.0+ 180.0+ 180.0+ 180.0+  19.0+  12.0   99.0  180.0+
#> [311]  11.0+ 180.0+   0.5   18.0  180.0+ 152.0+ 180.0+  21.0+   1.0   18.0+
#> [321] 101.0    4.0    7.0+ 180.0+ 180.0+ 180.0+ 171.0  180.0+ 174.0+   6.0 
#> [331] 180.0+ 180.0+ 180.0+ 180.0+   7.0+   2.0  103.0    3.0+ 180.0+  36.0 
#> [341]   5.0+ 180.0+ 180.0+  97.0  180.0+   7.0    8.0+   2.0+ 180.0+  18.0 
#> [351] 180.0+ 180.0+   7.0    8.0+  13.0+ 180.0+ 180.0+  19.0  180.0+   1.0 
#> [361]  60.0  180.0+  10.0+ 180.0+ 180.0+ 162.0    7.0+   7.0+ 124.0  180.0+
#> [371] 180.0+ 180.0+ 152.0  180.0+   2.0  180.0+ 180.0+ 180.0+  28.0  180.0+
#> [381] 180.0+  16.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+   3.0+  13.0+ 180.0+
#> [391] 180.0+ 180.0+  20.0   20.0  180.0+ 180.0+   8.0    3.0   87.0   12.0 
#> [401] 180.0+   4.0+  58.0  180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+   2.0 
#> [411] 180.0+  14.0+  10.0+ 180.0+   8.0+ 179.0+   1.0  180.0+ 180.0+ 159.0 
#> [421]  15.0  180.0+   1.0  180.0+  13.0    4.0+ 180.0+  57.0  180.0+  11.0 
#> [431]   3.0+  12.0  180.0+ 180.0+ 180.0+ 180.0+  34.0  177.0+ 180.0+  11.0+
#> [441]   4.0+ 180.0+  15.0+  10.0  180.0+ 180.0+ 180.0+   6.0  180.0+ 180.0+
#> [451]  85.0  180.0+ 180.0+   4.0  180.0+  12.0  180.0+   4.0    1.0  180.0+
#> [461] 180.0+  12.0  180.0+ 180.0+ 180.0+ 180.0+   8.0  180.0+ 180.0+   1.0 
#> [471]   7.0+  79.0  168.0+ 180.0+ 176.0+  18.0  180.0+   7.0  180.0+   7.0 
#> [481] 180.0+  32.0   10.0  180.0+ 119.0   12.0    8.0  180.0+ 180.0+   1.0 
#> [491]  80.0  180.0+ 180.0+ 152.0+  29.0   24.0   23.0  180.0+   3.0+ 180.0+
#> [501] 180.0+ 180.0+   4.0    4.0  180.0+   6.0    3.0+   2.0+ 180.0+   1.0 
#> [511] 171.0    3.0  180.0+ 138.0  180.0+   8.0   40.0  173.0   37.0  180.0+
#> [521]  15.0+   5.0+ 180.0+   3.0  171.0+ 166.0+  71.0   20.0+   3.0+  85.0 
#> [531]  10.0  180.0+   5.0    1.0  180.0+ 180.0+ 125.0  180.0+ 180.0+   9.0+
#> [541] 180.0+ 180.0+ 180.0+ 103.0  180.0+ 169.0   70.0    4.0  180.0+ 180.0+
#> [551]   7.0+ 180.0+   8.0+  16.0  180.0+ 180.0+ 180.0+ 180.0+ 177.0+ 180.0+
#> [561] 180.0+ 128.0  167.0    3.0+  62.0  180.0+   4.0    1.0  180.0+ 180.0+
#> [571] 180.0+  89.0   71.0    1.0   19.0   30.0  180.0+ 180.0+ 114.0    2.0 
#> [581] 180.0+ 180.0+   4.0+   1.0   12.0   16.0+   4.0+ 180.0+  77.0    3.0 
#> [591]  83.0    8.0  165.0    3.0  180.0+ 180.0+ 180.0+ 180.0+ 180.0+   4.0+
#> [601]   5.0  180.0+ 174.0    6.0   43.0  180.0+ 180.0+   3.0   13.0   92.0 
#> [611] 180.0+  38.0    4.0  177.0    3.0+   6.0+  62.0   20.0    4.0   46.0 
#> [621] 180.0+   8.0+ 180.0+   4.0  119.0  180.0+   1.0+ 180.0+   8.0  110.0 
#> [631]  29.0  180.0+  14.0  180.0+   8.0  180.0+  25.0    3.0   24.0   11.0 
#> [641] 126.0  180.0+   4.0    1.0  178.0+   3.0+ 158.0  180.0+ 169.0   52.0 
#> [651]   7.0    0.5  180.0+ 180.0+   4.0  180.0+  50.0    1.0+ 179.0+  76.0 
#> [661]  67.0   12.0    8.0   53.0    7.0+   0.5    2.0  180.0+   3.0   15.0+
#> 
#> $weights
#> NULL
#> 


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
#> Warning: Multiple lambdas have been fit. Lambda will be set to 0.01 (see parameter 's').

# Score the predictions
predictions$score()
#> surv.cindex 
#>    0.830929