Skip to contents

Generalized linear models with elastic net regularization. Calls glmnet::glmnet() from package glmnet.

Initial parameter values

  • family is set to "cox" and cannot be changed.

Prediction types

This learner returns three prediction types:

  1. lp: a vector containing the linear predictors (relative risk scores), where each score corresponds to a specific test observation. Calculated using glmnet::predict.coxnet().

  2. crank: same as lp.

  3. distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated using glmnet::survfit.coxnet(). Parameters stype and ctype relate to how lp predictions are transformed into survival predictions and are described in survival::survfit.coxph(). By default the Breslow estimator is used for computing the baseline hazard.

Caution: This learner is different to learners calling glmnet::cv.glmnet() in that it does not use the internal optimization of parameter lambda. Instead, lambda needs to be tuned by the user (e.g., via mlr3tuning). When lambda is tuned, the glmnet will be trained for each tuning iteration. While fitting the whole path of lambdas would be more efficient, as is done by default in glmnet::glmnet(), tuning/selecting the parameter at prediction time (using parameter s) is currently not supported in mlr3 (at least not in efficient manner). Tuning the s parameter is, therefore, currently discouraged.

When the data are i.i.d. and efficiency is key, we recommend using the respective auto-tuning counterpart in mlr_learners_surv.cv_glmnet(). However, in some situations this is not applicable, usually when data are imbalanced or not i.i.d. (longitudinal, time-series) and tuning requires custom resampling strategies (blocked design, stratification).

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.glmnet")

Meta Information

  • Task type: “surv”

  • Predict Types: “crank”, “distr”, “lp”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, mlr3proba, mlr3extralearners, glmnet

Parameters

IdTypeDefaultLevelsRange
alignmentcharacterlambdalambda, fraction-
alphanumeric1\([0, 1]\)
bignumeric9.9e+35\((-\infty, \infty)\)
devmaxnumeric0.999\([0, 1]\)
dfmaxinteger-\([0, \infty)\)
epsnumeric1e-06\([0, 1]\)
epsnrnumeric1e-08\([0, 1]\)
exactlogicalFALSETRUE, FALSE-
excludeuntyped--
exmxnumeric250\((-\infty, \infty)\)
fdevnumeric1e-05\([0, 1]\)
gammauntyped--
groupedlogicalTRUETRUE, FALSE-
interceptlogicalTRUETRUE, FALSE-
keeplogicalFALSETRUE, FALSE-
lambdauntyped--
lambda.min.rationumeric-\([0, 1]\)
lower.limitsuntyped-Inf-
maxitinteger100000\([1, \infty)\)
mnlaminteger5\([1, \infty)\)
mxitinteger100\([1, \infty)\)
mxitnrinteger25\([1, \infty)\)
newoffsetuntyped--
nlambdainteger100\([1, \infty)\)
offsetuntypedNULL-
parallellogicalFALSETRUE, FALSE-
penalty.factoruntyped--
pmaxinteger-\([0, \infty)\)
pminnumeric1e-09\([0, 1]\)
precnumeric1e-10\((-\infty, \infty)\)
predict.gammanumericgamma.1se\((-\infty, \infty)\)
relaxlogicalFALSETRUE, FALSE-
snumeric0.01\([0, \infty)\)
standardizelogicalTRUETRUE, FALSE-
threshnumeric1e-07\([0, \infty)\)
trace.itinteger0\([0, 1]\)
type.logisticcharacterNewtonNewton, modified.Newton-
type.multinomialcharacterungroupedungrouped, grouped-
upper.limitsuntypedInf-
stypeinteger2\([1, 2]\)
ctypeinteger-\([1, 2]\)

References

Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1–22. doi:10.18637/jss.v033.i01 .

See also

Author

be-marc

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvGlmnet

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method selected_features()

Returns the set of selected features as reported by glmnet::predict.glmnet() with type set to "nonzero".

Usage

LearnerSurvGlmnet$selected_features(lambda = NULL)

Arguments

lambda

(numeric(1))
Custom lambda, defaults to the active lambda depending on parameter set.

Returns

(character()) of feature names.


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerSurvGlmnet$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = mlr3::lrn("surv.glmnet")
print(learner)
#> <LearnerSurvGlmnet:surv.glmnet>: Regularized Generalized Linear Model
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3proba, mlr3extralearners, glmnet
#> * Predict Types:  [crank], distr, lp
#> * Feature Types: logical, integer, numeric
#> * Properties: selected_features, weights

# Define a Task
task = mlr3::tsk("grace")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> $model
#> 
#> Call:  (if (cv) glmnet::cv.glmnet else glmnet::glmnet)(x = data, y = target,      family = "cox") 
#> 
#>    Df  %Dev   Lambda
#> 1   0  0.00 0.177700
#> 2   2  0.58 0.161900
#> 3   2  1.56 0.147500
#> 4   2  2.40 0.134400
#> 5   3  5.80 0.122500
#> 6   3  8.29 0.111600
#> 7   4 10.18 0.101700
#> 8   4 11.70 0.092640
#> 9   4 12.93 0.084410
#> 10  4 13.93 0.076910
#> 11  4 14.77 0.070080
#> 12  4 15.45 0.063850
#> 13  4 16.03 0.058180
#> 14  4 16.51 0.053010
#> 15  4 16.92 0.048300
#> 16  5 17.27 0.044010
#> 17  5 17.58 0.040100
#> 18  5 17.84 0.036540
#> 19  6 18.07 0.033290
#> 20  6 18.27 0.030340
#> 21  6 18.44 0.027640
#> 22  6 18.59 0.025190
#> 23  6 18.71 0.022950
#> 24  6 18.82 0.020910
#> 25  6 18.90 0.019050
#> 26  6 18.98 0.017360
#> 27  6 19.04 0.015820
#> 28  6 19.09 0.014410
#> 29  6 19.14 0.013130
#> 30  6 19.17 0.011970
#> 31  6 19.21 0.010900
#> 32  6 19.23 0.009934
#> 33  6 19.25 0.009051
#> 34  6 19.27 0.008247
#> 35  6 19.29 0.007515
#> 36  6 19.30 0.006847
#> 37  6 19.31 0.006239
#> 38  6 19.32 0.005684
#> 39  6 19.33 0.005179
#> 40  6 19.33 0.004719
#> 41  6 19.34 0.004300
#> 42  6 19.34 0.003918
#> 43  6 19.35 0.003570
#> 44  6 19.35 0.003253
#> 
#> $x
#>        age los revasc revascdays stchange sysbp
#>   [1,]  32   5      1          0        1   121
#>   [2,]  33   2      0          2        0   150
#>   [3,]  35   5      1          2        0   172
#>   [4,]  35  10      1          9        0   106
#>   [5,]  34   5      0          5        0   120
#>   [6,]  35   2      0        180        0   121
#>   [7,]  35   2      1          1        1   112
#>   [8,]  37   9      0        180        1   151
#>   [9,]  38  13      1          0        1   161
#>  [10,]  38   2      0        115        0   150
#>  [11,]  35   0      0        180        1   119
#>  [12,]  38  12      1          8        1   120
#>  [13,]  36   5      1          0        1   115
#>  [14,]  33   6      1          1        1   115
#>  [15,]  40  12      1          9        0   153
#>  [16,]  42   3      1          1        1   130
#>  [17,]  38   5      1          3        0   125
#>  [18,]  42   2      0          2        0   140
#>  [19,]  40  11      1         10        1   120
#>  [20,]  43   3      1          0        1   100
#>  [21,]  41   2      1          1        0   166
#>  [22,]  43   4      1          0        1   130
#>  [23,]  42   4      0        180        0   162
#>  [24,]  40   3      1          1        0   170
#>  [25,]  42  12      1         10        1   170
#>  [26,]  43   2      1          1        1   116
#>  [27,]  44   5      1          1        0   170
#>  [28,]  45   3      0        180        1   154
#>  [29,]  45   9      1          7        0   110
#>  [30,]  44   2      1          1        1   150
#>  [31,]  43   2      0        180        1   140
#>  [32,]  46  15      0        180        0   120
#>  [33,]  46   2      1          1        0   126
#>  [34,]  48  15      0        180        1   160
#>  [35,]  45   3      0        150        0   130
#>  [36,]  46   7      1          2        0   166
#>  [37,]  46  13      1         10        0   100
#>  [38,]  43   3      1          0        1   124
#>  [39,]  45   8      1          0        1   117
#>  [40,]  49   5      0         73        1   136
#>  [41,]  45   5      0          5        0   141
#>  [42,]  46   6      1          0        1   100
#>  [43,]  47   2      0        180        0   108
#>  [44,]  44   9      1          8        1   135
#>  [45,]  45   5      0        180        1   190
#>  [46,]  46   4      0        180        1   121
#>  [47,]  44   2      0        180        0   142
#>  [48,]  45   9      1          0        1   145
#>  [49,]  47   3      1          1        1   120
#>  [50,]  48   3      0        180        0   154
#>  [51,]  47   5      1          3        1   130
#>  [52,]  47   9      1          6        0   170
#>  [53,]  46   3      1          0        1   119
#>  [54,]  49   4      0        180        0   117
#>  [55,]  47  10      0         10        1   140
#>  [56,]  50   1      1          0        1   129
#>  [57,]  48   2      1          0        0   184
#>  [58,]  47   7      0        180        0   145
#>  [59,]  50   4      1          1        0   125
#>  [60,]  49   7      1          7        1   110
#>  [61,]  46   9      1          9        1   122
#>  [62,]  49   2      0          2        0   105
#>  [63,]  51   1      0          1        1   145
#>  [64,]  49  15      1         11        1   160
#>  [65,]  46   6      1          0        1   156
#>  [66,]  52   2      0        180        1   170
#>  [67,]  50   7      1          0        1    92
#>  [68,]  51   3      1          2        0   113
#>  [69,]  49   7      1          4        1    90
#>  [70,]  47   8      0        180        0   160
#>  [71,]  51   8      0        180        1   140
#>  [72,]  52   2      0        180        0   155
#>  [73,]  48   7      1          0        1   110
#>  [74,]  53   8      0         36        1   160
#>  [75,]  48  17      1         10        0   111
#>  [76,]  47   2      1          1        0   110
#>  [77,]  52   4      1          4        0   152
#>  [78,]  49   9      1          3        0   102
#>  [79,]  49  15      0        180        1   160
#>  [80,]  54  17      1         12        1   102
#>  [81,]  53   7      1          0        0   199
#>  [82,]  54   6      1          3        0   129
#>  [83,]  51   3      1          1        0   140
#>  [84,]  50   2      0          5        1   106
#>  [85,]  50  10      1          6        0   122
#>  [86,]  50  14      1         13        0   170
#>  [87,]  51  25      1          1        0   202
#>  [88,]  49   5      1          2        1   150
#>  [89,]  53   4      0          4        0   140
#>  [90,]  52  14      1          7        1   200
#>  [91,]  48   6      0        180        0   160
#>  [92,]  53   4      1          0        1   156
#>  [93,]  54   9      1          0        1   138
#>  [94,]  49  16      0         16        0   125
#>  [95,]  54  23      1         10        0   131
#>  [96,]  52   7      1          2        0   154
#>  [97,]  55   6      1          2        1   114
#>  [98,]  54   9      1          1        0   130
#>  [99,]  55   4      1          2        0   150
#> [100,]  52   4      0        180        1   180
#> [101,]  51  13      1         11        0   145
#> [102,]  50   5      1          4        1   150
#> [103,]  54   4      1          0        1   121
#> [104,]  50   3      0        174        1   153
#> [105,]  49   1      0          1        1   110
#> [106,]  50   7      1          1        0   156
#> [107,]  53   9      0          9        1    95
#> [108,]  53   8      1          0        1   130
#> [109,]  50   7      1          0        1   127
#> [110,]  56   4      1          1        1   130
#> [111,]  52   5      0        175        1   117
#> [112,]  54   1      0        180        0   162
#> [113,]  54   7      1          0        1   100
#> [114,]  56   2      0        180        0   132
#> [115,]  55   5      1          4        1   120
#> [116,]  52   8      0        180        0   119
#> [117,]  53  18      1          9        1   150
#> [118,]  52  16      0         16        0   152
#> [119,]  52  16      1         14        0   170
#> [120,]  53   4      0        180        1   150
#> [121,]  55   6      0        180        1   100
#> [122,]  55   6      1          5        1   138
#> [123,]  54  12      1          0        1   190
#> [124,]  55   2      0        134        1   140
#> [125,]  55   1      0          2        0   130
#> [126,]  57   3      0          3        0   120
#> [127,]  54   7      1          2        0   129
#> [128,]  54   2      1          1        0   135
#> [129,]  54   2      1          1        1   176
#> [130,]  57   1      0        180        1   156
#> [131,]  56  14      1         11        0   130
#> [132,]  57  10      0        180        1   170
#> [133,]  58   8      0          8        1   130
#> [134,]  55   3      1          1        1   156
#> [135,]  57   0      0          0        1   150
#> [136,]  53  21      1         13        1   130
#> [137,]  57   4      0        180        1   119
#> [138,]  58   6      1          0        1    90
#> [139,]  55   9      1          2        1   147
#> [140,]  56   5      0          5        1   150
#> [141,]  54  23      1          8        0   120
#> [142,]  57   4      1          2        1   185
#> [143,]  53   4      0        147        1   145
#> [144,]  53   7      1          0        1   120
#> [145,]  57  11      1         10        1   129
#> [146,]  55   5      0          5        1   131
#> [147,]  54   7      1          0        1   141
#> [148,]  56   4      0          4        0   164
#> [149,]  59  15      1         10        0   140
#> [150,]  58   9      1          0        1   180
#> [151,]  55   5      1          0        0   140
#> [152,]  56   7      1          5        1   120
#> [153,]  59   9      1          1        1   125
#> [154,]  57   1      0        180        0   148
#> [155,]  60  11      1          9        0   106
#> [156,]  59   3      0        180        0   120
#> [157,]  57   2      0          2        1   120
#> [158,]  60   5      1          1        0   138
#> [159,]  58  11      1          9        1   124
#> [160,]  55   5      1          0        1   160
#> [161,]  57  10      1          9        0   103
#> [162,]  59   4      1          0        1   152
#> [163,]  58  26      1          0        1   189
#> [164,]  60   0      1          0        1    80
#> [165,]  59   2      1          1        0   140
#> [166,]  58   8      0        161        1   140
#> [167,]  58  14      1          6        0   190
#> [168,]  61   4      1          3        0   151
#> [169,]  61   9      1          8        0   150
#> [170,]  58   1      0          1        1   100
#> [171,]  61  20      1         13        0   130
#> [172,]  57   2      1          0        1   116
#> [173,]  57   4      1          3        0   138
#> [174,]  61   3      0         17        0   143
#> [175,]  56  14      0         45        0   130
#> [176,]  57   3      1          2        0   120
#> [177,]  56  13      1          6        1   158
#> [178,]  56  18      1         11        1   165
#> [179,]  58  11      0        172        1   135
#> [180,]  56   8      1          8        0   120
#> [181,]  57   1      0          1        0   126
#> [182,]  57  15      1         13        1   110
#> [183,]  59   5      1          2        0   182
#> [184,]  58   5      1          1        1   135
#> [185,]  59  10      0        180        0   160
#> [186,]  61   8      0         77        0   120
#> [187,]  62  10      1          0        1   153
#> [188,]  58   8      1          3        1   150
#> [189,]  60   7      0          7        0   147
#> [190,]  59  13      1          2        0   198
#> [191,]  57  12      1          9        1   120
#> [192,]  62   4      1          0        0   160
#> [193,]  58   3      1          0        1   146
#> [194,]  62   4      1          3        0   173
#> [195,]  63   6      0         28        1   120
#> [196,]  61  13      0         13        0   120
#> [197,]  61   5      0          5        1   110
#> [198,]  57  18      1          9        1    93
#> [199,]  58  11      1          9        0   179
#> [200,]  57   2      1          1        0   159
#> [201,]  62  17      1         10        1   180
#> [202,]  58   7      0        180        1   150
#> [203,]  63   3      1          1        0   180
#> [204,]  63   1      0        180        1   130
#> [205,]  63   4      1          3        0   222
#> [206,]  62   3      0        180        1   105
#> [207,]  63   4      0        180        1   190
#> [208,]  63  15      1         10        1   126
#> [209,]  64   4      0        180        0   130
#> [210,]  63   4      1          1        0   155
#> [211,]  60  18      1         13        0   132
#> [212,]  59   8      0        180        1   140
#> [213,]  58   2      0        180        0   127
#> [214,]  59   4      0        180        0   196
#> [215,]  60   7      1          5        1   141
#> [216,]  60   7      1          1        1    90
#> [217,]  63   1      0          1        0   162
#> [218,]  61  15      1         13        0   170
#> [219,]  59   4      0          4        0   149
#> [220,]  62   6      0          6        0   120
#> [221,]  63  12      1         10        0   200
#> [222,]  61   6      1          1        1   117
#> [223,]  64  12      1         11        0   160
#> [224,]  66   1      1          0        1   120
#> [225,]  65  36      1         11        0   140
#> [226,]  63   4      1          3        0   162
#> [227,]  61  10      1          2        1   194
#> [228,]  63  12      1          9        0   114
#> [229,]  63   7      0        180        0   120
#> [230,]  66   5      1          0        1   110
#> [231,]  65   8      1          0        0   168
#> [232,]  64   0      0          0        1    90
#> [233,]  61  12      1         11        0   154
#> [234,]  64   9      0        180        0   150
#> [235,]  61   4      0        180        1   113
#> [236,]  63  16      1          7        1   110
#> [237,]  66   6      1          1        1   130
#> [238,]  62   3      1          1        1   199
#> [239,]  65   6      0          9        0   112
#> [240,]  65   3      1          0        1    80
#> [241,]  63   5      1          4        0   170
#> [242,]  63   2      1          1        0   180
#> [243,]  62  13      1         11        0   180
#> [244,]  67  11      0         11        1   100
#> [245,]  66  18      1          5        0   142
#> [246,]  66  16      1         11        1   169
#> [247,]  62   9      0        180        0   145
#> [248,]  61  14      1          5        0   140
#> [249,]  63   9      1          8        1   160
#> [250,]  63   3      1          2        0   120
#> [251,]  63   2      1          0        0   140
#> [252,]  64  19      1          8        1   160
#> [253,]  67   6      0        180        1   170
#> [254,]  68   5      1          4        1   150
#> [255,]  64  13      1         12        1   150
#> [256,]  64   6      1          0        1   125
#> [257,]  66   7      1          0        1   115
#> [258,]  64  14      1         13        1   150
#> [259,]  64   0      0          0        1   148
#> [260,]  67   4      1          3        0   130
#> [261,]  66   3      1          0        1   135
#> [262,]  66   6      1          0        1   140
#> [263,]  65   2      1          1        1   170
#> [264,]  68   1      0        180        1   166
#> [265,]  68   5      0          5        1    90
#> [266,]  63  10      0         16        1   160
#> [267,]  66  14      0        180        0   130
#> [268,]  64   1      0          1        1   120
#> [269,]  65  17      1         14        1   100
#> [270,]  63   8      1          1        1   162
#> [271,]  63  10      0         18        1   130
#> [272,]  68  14      0         79        0   172
#> [273,]  66  12      1         10        1   150
#> [274,]  65  15      1         12        1   150
#> [275,]  69  12      0         15        1   140
#> [276,]  66  15      1         13        1   160
#> [277,]  63   2      0        180        0   150
#> [278,]  65  11      1          6        0   130
#> [279,]  69  21      1         10        0   180
#> [280,]  69   6      0        180        1   100
#> [281,]  63   8      0        180        1   120
#> [282,]  68  14      1         13        1   140
#> [283,]  65   8      1          0        1    90
#> [284,]  67   1      0        180        1   160
#> [285,]  68  10      1         10        1   150
#> [286,]  67   7      1          4        1   130
#> [287,]  63   2      1          0        0    99
#> [288,]  67   2      0        180        0   184
#> [289,]  65   6      0          6        0    80
#> [290,]  65  10      1          1        1   148
#> [291,]  66  19      1         12        1   150
#> [292,]  67  12      1         12        0   160
#> [293,]  69   6      0         99        1   140
#> [294,]  65   4      1          1        0   130
#> [295,]  64   4      0        179        0   160
#> [296,]  70  15      1         12        1   132
#> [297,]  64   4      0        180        1   140
#> [298,]  64   0      1          0        1   118
#> [299,]  67   2      0         18        0   131
#> [300,]  66   7      1          5        1   131
#> [301,]  66   4      0        180        0   177
#> [302,]  68   4      1          0        1   160
#> [303,]  69   4      1          3        1   150
#> [304,]  69  17      1         10        0   140
#> [305,]  69   8      0         93        0   140
#> [306,]  66   6      0        180        0   140
#> [307,]  65   1      0          1        1   120
#> [308,]  68  18      1          0        1   160
#> [309,]  68   4      0          4        1   190
#> [310,]  71   3      0          5        0   112
#> [311,]  68   7      0        150        0   210
#> [312,]  66   9      1          3        1   151
#> [313,]  70   4      1          0        1   180
#> [314,]  70  14      0        171        0   166
#> [315,]  67  10      1          9        0   200
#> [316,]  67   6      1          4        0   130
#> [317,]  68  18      1         14        1   170
#> [318,]  69   0      0          0        1   148
#> [319,]  65   2      0        180        0   130
#> [320,]  69   3      1          2        0   151
#> [321,]  69   8      0        180        1   180
#> [322,]  71   7      0          7        0   230
#> [323,]  66   2      0          2        1   228
#> [324,]  69   5      0          5        1   142
#> [325,]  69   3      0          3        1   130
#> [326,]  70  22      1         13        0   103
#> [327,]  68   6      0        180        0   145
#> [328,]  69   6      1          4        1   174
#> [329,]  72   3      1          0        1   132
#> [330,]  69   8      1          7        1   108
#> [331,]  67   3      0        180        0   110
#> [332,]  66   2      1          1        0   123
#> [333,]  69  19      0        180        0   130
#> [334,]  67  14      0        172        1   140
#> [335,]  67   7      1          4        0   122
#> [336,]  68   2      0          7        1   130
#> [337,]  69   8      1          2        0   121
#> [338,]  70   3      0        123        0   130
#> [339,]  70   9      0        180        1   142
#> [340,]  67  12      1          8        0   120
#> [341,]  69   1      0          1        1   110
#> [342,]  67   1      0          1        1    60
#> [343,]  69   5      0         76        0   120
#> [344,]  67   8      1          0        1   130
#> [345,]  72  13      1         11        1   195
#> [346,]  68  10      1          8        1   160
#> [347,]  66  24      1         13        0   130
#> [348,]  72  30      1          0        1   145
#> [349,]  68   7      1          2        0   135
#> [350,]  73  20      1          0        1   170
#> [351,]  71   6      0          9        0   120
#> [352,]  70  11      0        180        1   210
#> [353,]  72  19      1          8        0   120
#> [354,]  72  12      1         10        0   170
#> [355,]  67   8      0        180        1   170
#> [356,]  67   5      1          0        1   147
#> [357,]  67   9      0        180        0   158
#> [358,]  73  13      0        152        1   130
#> [359,]  70   5      0        180        0   150
#> [360,]  67   4      1          1        0   134
#> [361,]  72   6      1          5        0   115
#> [362,]  71   1      0        173        1   188
#> [363,]  68  23      0        180        1   220
#> [364,]  70   3      0        180        0   121
#> [365,]  71   3      1          2        0   150
#> [366,]  68   4      1          3        0   210
#> [367,]  72   5      0         28        0   120
#> [368,]  71   5      0        180        0   191
#> [369,]  73   6      0        180        1   117
#> [370,]  69  16      1         10        1   140
#> [371,]  69   8      1          1        0   164
#> [372,]  68   7      0        180        1   130
#> [373,]  70   4      0        180        0   180
#> [374,]  69   1      1          0        0   155
#> [375,]  72   8      1          1        1   150
#> [376,]  71   2      1          0        1   180
#> [377,]  73   7      0          7        1   140
#> [378,]  68  15      1         13        1   130
#> [379,]  70  13      1          9        0   100
#> [380,]  72   6      0        180        1   130
#> [381,]  74   8      1          0        1    85
#> [382,]  73   4      0        180        1   154
#> [383,]  69   2      1          0        1   110
#> [384,]  68   9      0        180        1   120
#> [385,]  71  20      1         10        0   140
#> [386,]  73   3      1          0        1   136
#> [387,]  70   5      1          0        1   190
#> [388,]  73  10      1          8        0   106
#> [389,]  74   4      0          4        0   120
#> [390,]  72   5      1          3        1   160
#> [391,]  70   3      0        180        1   154
#> [392,]  71   7      1          2        0   143
#> [393,]  74   3      0          3        1   150
#> [394,]  73  17      1         11        0   140
#> [395,]  71  13      1          8        0   121
#> [396,]  70   4      1          0        1   140
#> [397,]  71  14      1         13        1   170
#> [398,]  74   7      1          0        1   117
#> [399,]  72  10      1          8        1   153
#> [400,]  69   7      0        180        1   144
#> [401,]  70   8      0          8        0   120
#> [402,]  75   1      0          1        0   133
#> [403,]  75   2      1          1        0   145
#> [404,]  72  10      1          9        1   160
#> [405,]  73  10      1         10        1   120
#> [406,]  74  15      1          9        1   179
#> [407,]  71   2      0         10        1   112
#> [408,]  73   1      0          1        1    80
#> [409,]  75  13      1          1        1   130
#> [410,]  71   4      0          4        0   134
#> [411,]  72  15      1         12        1   120
#> [412,]  70   7      1          4        0   184
#> [413,]  72   1      1          1        0   168
#> [414,]  72   7      0         57        1   145
#> [415,]  73  10      0        180        0   162
#> [416,]  72  11      0         11        1   140
#> [417,]  73   5      1          3        1   112
#> [418,]  76  25      1         12        1   170
#> [419,]  73  12      1         12        1   140
#> [420,]  75   1      0        180        1   140
#> [421,]  72   4      1          0        1   197
#> [422,]  73   4      0        180        0   124
#> [423,]  76   3      1          0        1   120
#> [424,]  72   5      0        180        0   154
#> [425,]  72   3      0        180        0   160
#> [426,]  76   5      0          5        1   130
#> [427,]  77   4      0          4        0   185
#> [428,]  75   3      1          1        0   180
#> [429,]  73  15      0         15        1   160
#> [430,]  73  10      1         10        0   124
#> [431,]  74   7      0        180        1   150
#> [432,]  74   3      0          3        1   128
#> [433,]  76   1      0        180        0   114
#> [434,]  74   2      1          1        0   140
#> [435,]  76   8      1          0        1   141
#> [436,]  74  19      1          4        1   200
#> [437,]  75  23      1         14        1   110
#> [438,]  74   2      0        180        0   190
#> [439,]  72   4      0         85        1   120
#> [440,]  72   4      1          3        0   160
#> [441,]  76  17      1          0        1   200
#> [442,]  73   4      1          3        1   125
#> [443,]  76  13      1         10        0   110
#> [444,]  75   0      0          0        1   130
#> [445,]  75   4      1          2        1   188
#> [446,]  74   6      0        180        0   160
#> [447,]  76   4      0          4        1   155
#> [448,]  75   1      0          1        1   125
#> [449,]  73   1      0         52        1   105
#> [450,]  73   0      0        180        0   156
#> [451,]  72   5      0        180        0   120
#> [452,]  78  12      1         11        1   160
#> [453,]  76  44      1         10        0   105
#> [454,]  76   5      0        180        0   185
#> [455,]  74  10      1          0        1   135
#> [456,]  74   8      1          8        1   170
#> [457,]  77   5      1          0        0   123
#> [458,]  77  12      0        180        0   130
#> [459,]  77   1      1          0        1    90
#> [460,]  76  12      1         11        1   120
#> [461,]  78   5      1          0        1   170
#> [462,]  74   9      1          8        0   200
#> [463,]  75   6      0        180        0   150
#> [464,]  79  10      1          8        0   190
#> [465,]  74   2      1          0        1   130
#> [466,]  76  29      0         47        0    90
#> [467,]  73   8      1          1        1   162
#> [468,]  73  11      1          2        1   110
#> [469,]  78   8      1          6        1   110
#> [470,]  74   7      0          7        0   161
#> [471,]  78  32      1          9        1   198
#> [472,]  80  10      1          6        1   147
#> [473,]  78   0      0        180        1   212
#> [474,]  78  13      1          5        0   130
#> [475,]  75  12      1          1        1   120
#> [476,]  78  15      0        180        1   270
#> [477,]  80   8      0          8        1   120
#> [478,]  75  13      1          6        0   150
#> [479,]  74  10      1          8        0   135
#> [480,]  76   1      0          1        1    83
#> [481,]  78  12      1          9        0   150
#> [482,]  75   4      1          0        0   212
#> [483,]  77   2      1          0        1   143
#> [484,]  76  11      1          0        0   120
#> [485,]  75  11      1          4        0   162
#> [486,]  75   3      0          3        0     0
#> [487,]  76   7      0         29        1   150
#> [488,]  77  24      0         24        1   160
#> [489,]  80   9      0         23        1   128
#> [490,]  78   6      1          0        1   240
#> [491,]  76   3      1          0        1   140
#> [492,]  79  11      0        180        0   160
#> [493,]  79   2      1          0        1   121
#> [494,]  78  14      1          0        1   140
#> [495,]  81   1      0          1        0   130
#> [496,]  76   4      0          4        1   160
#> [497,]  79   4      0          4        1   125
#> [498,]  76  12      1         10        1   127
#> [499,]  77   6      0          6        1   107
#> [500,]  80   3      1          0        1   120
#> [501,]  78  11      0        180        1   135
#> [502,]  76   1      0          1        1   140
#> [503,]  77  31      1          3        1   161
#> [504,]  78   7      1          0        1   110
#> [505,]  79   3      0          3        0   120
#> [506,]  77   7      0        180        1   170
#> [507,]  77   6      0          6        1   144
#> [508,]  79   4      1          0        1   120
#> [509,]  81   1      0        180        0   120
#> [510,]  80  15      1         12        1   150
#> [511,]  77   9      1          4        0   141
#> [512,]  82   5      0          8        1   120
#> [513,]  80  40      1          0        1   138
#> [514,]  78   4      0         59        1   112
#> [515,]  80  17      1         12        0   100
#> [516,]  76   7      0        161        0   151
#> [517,]  79  10      0         10        1   120
#> [518,]  80  15      1          0        1    90
#> [519,]  81   4      1          2        1   126
#> [520,]  78  32      0        180        1   130
#> [521,]  81   3      0        180        0   184
#> [522,]  78  15      0         15        0   165
#> [523,]  80   5      1          1        1   108
#> [524,]  78   4      0        180        0   175
#> [525,]  78  26      1          5        0   194
#> [526,]  76   1      0        166        0   131
#> [527,]  81   4      1          1        1   104
#> [528,]  80   1      0          1        0   100
#> [529,]  78   3      1          1        1   152
#> [530,]  80   2      1          1        0   168
#> [531,]  79   6      0          6        0   152
#> [532,]  80   6      1          0        1   119
#> [533,]  82   1      1          0        1    82
#> [534,]  79  10      0        180        1   150
#> [535,]  77   4      0        180        1    98
#> [536,]  78  12      0        180        0   134
#> [537,]  82  21      1          2        0   155
#> [538,]  79   4      0          4        1   121
#> [539,]  80   6      0          6        1   110
#> [540,]  82   5      0        180        0   110
#> [541,]  83   5      0        180        0   148
#> [542,]  79   7      1          6        0   130
#> [543,]  83   4      0        103        0    97
#> [544,]  81  11      1          8        0   160
#> [545,]  81   5      0        177        0    41
#> [546,]  80  11      1          8        0   170
#> [547,]  78  23      1         10        1   145
#> [548,]  79   4      0          4        1   183
#> [549,]  78   9      1          4        1   120
#> [550,]  82   8      1          1        0   128
#> [551,]  79   1      0        180        1   170
#> [552,]  81  15      0        180        1   140
#> [553,]  80   7      1          0        1   146
#> [554,]  84   5      1          1        1    85
#> [555,]  81  20      1          9        0   170
#> [556,]  83   8      0          8        0   115
#> [557,]  80   6      1          0        1   150
#> [558,]  80  11      1          8        0   110
#> [559,]  81   8      0        180        0   146
#> [560,]  80   8      1          7        0   160
#> [561,]  85   4      0        180        0    90
#> [562,]  81   2      1          1        0   198
#> [563,]  83   2      0          2        1   155
#> [564,]  82   6      0        128        1   100
#> [565,]  80   3      1          1        1   230
#> [566,]  82  23      1          0        0   110
#> [567,]  84   4      0          4        1    85
#> [568,]  81   1      0          1        1   150
#> [569,]  84   1      0         38        1   205
#> [570,]  83   3      0        180        0   174
#> [571,]  81   4      0         90        1   138
#> [572,]  80  13      1          8        1   140
#> [573,]  84   4      0         89        1   129
#> [574,]  80   2      1          0        1   130
#> [575,]  79   4      0          4        1    60
#> [576,]  83   1      0          1        1   100
#> [577,]  82  19      0         19        0   120
#> [578,]  80  30      1         13        0   220
#> [579,]  83   9      0        180        0   198
#> [580,]  83   3      0        114        0    98
#> [581,]  83   2      0        154        0   130
#> [582,]  82   0      0          2        1   100
#> [583,]  83   1      0        180        0   160
#> [584,]  81   4      0          4        0   175
#> [585,]  84  15      1         13        1   110
#> [586,]  81   1      0          1        1   145
#> [587,]  81  12      0         12        1   163
#> [588,]  82   5      1          0        1   146
#> [589,]  81   4      0          4        0   160
#> [590,]  86  12      0        180        1   120
#> [591,]  81  19      1         14        0   120
#> [592,]  82   3      1          2        0   130
#> [593,]  82  15      1          0        0   183
#> [594,]  80   2      0         88        0   135
#> [595,]  83   7      0        126        0   135
#> [596,]  84   6      0        165        0   145
#> [597,]  86   3      0          3        1   140
#> [598,]  84   3      0        180        1   120
#> [599,]  81  13      0        180        0   152
#> [600,]  81   2      1          0        1   118
#> [601,]  81   4      0        180        0   160
#> [602,]  83   9      0        180        1   149
#> [603,]  82   1      0        180        1   193
#> [604,]  83   4      0          4        0   130
#> [605,]  86  12      1          0        1   132
#> [606,]  82  14      1         11        1   103
#> [607,]  86   6      1          0        1   140
#> [608,]  83  19      0         43        0   150
#> [609,]  84   3      1          2        0   125
#> [610,]  88  14      1          3        1   130
#> [611,]  84   3      0          3        1   121
#> [612,]  84   7      1          2        0   148
#> [613,]  87   2      0        180        0   113
#> [614,]  84   9      0         92        1   110
#> [615,]  84   3      0        180        1   170
#> [616,]  86   4      0         38        1   122
#> [617,]  82   4      0          4        0   130
#> [618,]  86  13      0        177        0   163
#> [619,]  85   3      0          3        1   113
#> [620,]  86   6      0          6        1   117
#> [621,]  88   4      0          4        1   115
#> [622,]  83   9      0         65        1   150
#> [623,]  86   9      1          7        1   142
#> [624,]  88   3      0        115        0   110
#> [625,]  83   3      0          3        1   130
#> [626,]  86  15      1          8        1   109
#> [627,]  89   4      0          4        1   153
#> [628,]  89   5      0        119        1   140
#> [629,]  87   6      0        180        1   110
#> [630,]  87   1      0          1        0   170
#> [631,]  84   8      0        180        1   119
#> [632,]  84   2      0        110        1   174
#> [633,]  87  29      0         29        1    97
#> [634,]  87  15      1          9        1   138
#> [635,]  84   0      0        180        1   136
#> [636,]  90  14      0         14        1   100
#> [637,]  86   4      0        180        1   145
#> [638,]  87   2      0        180        0   160
#> [639,]  91  10      0        145        0   135
#> [640,]  88   7      0         24        0   119
#> [641,]  88   8      0         50        1   154
#> [642,]  90  11      1         10        1   186
#> [643,]  87   6      0        126        1   168
#> [644,]  86   9      1          7        0   130
#> [645,]  91   1      0          1        1    74
#> [646,]  87  43      0        178        1   130
#> [647,]  87   5      0         36        1   150
#> [648,]  88   3      1          2        0   159
#> [649,]  91   3      0         33        1   137
#> [650,]  87   7      0         74        1   105
#> [651,]  89  12      1          0        1   130
#> [652,]  91   5      0        169        1   176
#> [653,]  89  52      0         52        1   130
#> [654,]  89   4      0          4        1   159
#> [655,]  91   0      0          0        0     0
#> [656,]  90  19      1         11        1   129
#> [657,]  90   1      0          1        1   118
#> [658,]  93   8      0        179        1   110
#> [659,]  92   4      0         76        1   149
#> [660,]  91   1      0        180        0   158
#> [661,]  90  16      0         16        1   106
#> [662,]  90   3      0         67        0   162
#> [663,]  96   3      0         12        1    97
#> [664,]  95   8      1          5        1   150
#> [665,]  91   7      0          7        0   135
#> [666,]  93   0      1          0        1   122
#> [667,]  92   2      0          2        0   112
#> [668,]  93   4      0        180        1   135
#> [669,]  96   3      1          0        1   104
#> [670,]  96  15      1          0        1   140
#> 
#> $y
#>   [1]   5.0+   2.0+   5.0+ 180.0+   5.0+ 180.0+   2.0+ 180.0+ 180.0+ 115.0 
#>  [11] 180.0+  12.0    5.0+ 180.0+ 180.0+ 180.0+   5.0+   2.0+ 180.0+   3.0 
#>  [21] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+   2.0+ 155.0+ 180.0+ 180.0+ 180.0+
#>  [31] 180.0+ 180.0+ 180.0+ 180.0+ 150.0  180.0+ 180.0+ 180.0+ 180.0+  73.0 
#>  [41]   5.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 177.0+ 180.0+ 180.0+
#>  [51] 180.0+ 180.0+ 180.0+ 180.0+  10.0+ 172.0+ 180.0+ 180.0+ 180.0+   7.0 
#>  [61] 180.0+   2.0    1.0  179.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#>  [71] 180.0+ 180.0+   7.0   36.0   88.0+ 180.0+   4.0+ 180.0+ 180.0+ 180.0+
#>  [81] 180.0+ 180.0+ 180.0+   5.0  180.0+ 180.0+ 180.0+ 180.0+   4.0+  85.0 
#>  [91] 180.0+ 166.0+ 180.0+  16.0+ 152.0+   7.0+   6.0+ 180.0+ 180.0+ 180.0+
#> [101]  13.0+ 171.0+ 180.0+ 174.0+   1.0  180.0+   9.0+ 180.0+ 180.0+ 180.0+
#> [111] 175.0+ 180.0+   7.0+ 180.0+ 180.0+ 180.0+ 180.0+  16.0+  16.0  180.0+
#> [121] 180.0+ 180.0+  12.0+ 134.0+   2.0    3.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [131] 180.0+ 180.0+   8.0+ 180.0+   0.5  180.0+ 180.0+ 180.0+  15.0    5.0+
#> [141] 180.0+   4.0+ 147.0+ 180.0+ 180.0+   5.0+ 180.0+   4.0+ 180.0+   9.0+
#> [151] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+   2.0  180.0+ 180.0+ 180.0+
#> [161] 180.0+ 180.0+ 180.0+   0.5  180.0+ 161.0+ 171.0+ 180.0+ 180.0+   1.0 
#> [171] 180.0+ 180.0+ 180.0+  17.0   45.0    3.0+ 180.0+ 180.0+ 172.0+   8.0 
#> [181]   1.0+  15.0  180.0+ 180.0+ 180.0+  77.0  180.0+ 180.0+   7.0+ 180.0+
#> [191] 180.0+ 180.0+   3.0+ 180.0+  28.0   13.0+   5.0   18.0  180.0+ 180.0+
#> [201] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+   4.0+
#> [211] 180.0+ 180.0+ 180.0+ 180.0+  84.0  180.0+   1.0  180.0+   4.0+   6.0+
#> [221] 180.0+ 180.0+  12.0  180.0+  36.0  180.0+  88.0   12.0  180.0+ 180.0+
#> [231] 180.0+   0.5   12.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+   9.0    3.0 
#> [241] 180.0+ 180.0+ 180.0+  11.0+  18.0+ 180.0+ 180.0+ 180.0+ 180.0+   3.0+
#> [251]   2.0+ 103.0  180.0+   5.0+  13.0  180.0+ 179.0+  14.0+   0.5+ 180.0+
#> [261]   3.0+ 180.0+ 175.0+ 180.0+   5.0   16.0  180.0+   1.0  180.0+ 180.0+
#> [271]  18.0   79.0   80.0   15.0+  15.0  180.0+ 180.0+ 180.0+ 174.0+ 180.0+
#> [281] 180.0+ 180.0+   8.0+ 180.0+  10.0  180.0+ 180.0+ 180.0+   6.0  180.0+
#> [291]  19.0+  12.0   99.0  180.0+ 179.0+ 180.0+ 180.0+   0.5   18.0    7.0+
#> [301] 180.0+ 180.0+ 152.0+ 180.0+  93.0  180.0+   1.0   18.0+   4.0    5.0 
#> [311] 150.0  180.0+ 180.0+ 171.0  174.0+   6.0  180.0+   0.5  180.0+ 180.0+
#> [321] 180.0+   7.0+   2.0    5.0+   3.0+ 180.0+ 180.0+  97.0  180.0+   8.0+
#> [331] 180.0+   2.0+ 180.0+ 172.0+   7.0    7.0    8.0+ 123.0  180.0+ 180.0+
#> [341]   1.0    1.0   76.0  180.0+ 132.0   10.0+ 180.0+ 162.0    7.0+ 124.0 
#> [351]   9.0  180.0+ 180.0+  12.0  180.0+ 180.0+ 180.0+ 152.0  180.0+  76.0 
#> [361] 180.0+ 173.0+ 180.0+ 180.0+ 180.0+ 180.0+  28.0  180.0+ 180.0+  16.0+
#> [371] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+   7.0+  15.0   13.0+ 180.0+
#> [381] 180.0+ 180.0+   2.0  180.0+  20.0  180.0+ 180.0+  87.0    4.0+ 180.0+
#> [391] 180.0+ 180.0+   3.0  180.0+ 175.0  180.0+  14.0+ 180.0+  10.0+ 180.0+
#> [401]   8.0+   1.0  180.0+ 159.0   15.0  180.0+  10.0    1.0   13.0    4.0+
#> [411] 180.0+ 104.0+   1.0   57.0  180.0+  11.0    5.0  180.0+  12.0  180.0+
#> [421] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+   5.0    4.0+ 180.0+  15.0+  10.0 
#> [431] 180.0+   3.0  180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+  85.0  180.0+
#> [441]  17.0+ 180.0+ 174.0+   0.5   46.0  180.0+   4.0    1.0   52.0  180.0+
#> [451] 180.0+  12.0  180.0+ 180.0+ 180.0+   8.0    5.0  180.0+   1.0   12.0 
#> [461] 180.0+ 168.0+ 180.0+ 180.0+ 176.0+  47.0  180.0+  11.0    8.0+   7.0 
#> [471]  32.0   10.0  180.0+ 172.0   12.0  180.0+   8.0  180.0+ 180.0+   1.0 
#> [481] 180.0+   4.0+   2.0   11.0  152.0+   3.0   29.0   24.0   23.0  180.0+
#> [491]   3.0+ 180.0+ 180.0+ 180.0+   1.0    4.0    4.0  180.0+   6.0    3.0+
#> [501] 180.0+   1.0  171.0   43.0    3.0  180.0+   6.0  138.0  180.0+ 180.0+
#> [511]  71.0    8.0   40.0   59.0   17.0  161.0   10.0+ 180.0+  93.0  180.0+
#> [521] 180.0+  15.0+   5.0+ 180.0+ 171.0+ 166.0+  71.0    1.0    3.0+  10.0 
#> [531]   6.0+   6.0    1.0  180.0+ 180.0+ 180.0+ 180.0+   4.0    6.0  180.0+
#> [541] 180.0+ 180.0+ 103.0  180.0+ 177.0+ 169.0   70.0    4.0  180.0+ 180.0+
#> [551] 180.0+ 180.0+   7.0+ 180.0+  20.0    8.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [561] 180.0+ 180.0+   2.0  128.0    3.0+  62.0    4.0    1.0   38.0  180.0+
#> [571]  90.0  180.0+  89.0  180.0+   4.0    1.0   19.0   30.0  180.0+ 114.0 
#> [581] 154.0    2.0  180.0+   4.0+ 180.0+   1.0   12.0    5.0+   4.0+ 180.0+
#> [591] 180.0+   3.0   83.0   88.0  126.0  165.0    3.0  180.0+ 180.0+ 180.0+
#> [601] 180.0+ 180.0+ 180.0+   4.0+ 180.0+ 174.0    6.0   43.0  180.0+  14.0 
#> [611]   3.0  180.0+ 180.0+  92.0  180.0+  38.0    4.0  177.0    3.0+   6.0+
#> [621]   4.0   65.0   11.0  115.0    3.0+ 180.0+   4.0  119.0  180.0+   1.0+
#> [631] 180.0+ 110.0   29.0  180.0+ 180.0+  14.0  180.0+ 180.0+ 145.0   24.0 
#> [641]  50.0   11.0  126.0  180.0+   1.0  178.0+  36.0   75.0   33.0   74.0 
#> [651] 180.0+ 169.0   52.0    4.0    0.5  180.0+   1.0+ 179.0+  76.0  180.0+
#> [661]  16.0   67.0   12.0    8.0    7.0+   0.5    2.0  180.0+   3.0   15.0+
#> 
#> $weights
#> NULL
#> 


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
#> Warning: Multiple lambdas have been fit. Lambda will be set to 0.01 (see parameter 's').

# Score the predictions
predictions$score()
#> surv.cindex 
#>   0.8279966