GLM with Elastic Net Regularization Survival Learner
mlr_learners_surv.glmnet.Rd
Generalized linear models with elastic net regularization.
Calls glmnet::glmnet()
from package glmnet.
Prediction types
This learner returns three prediction types:
lp
: a vector containing the linear predictors (relative risk scores), where each score corresponds to a specific test observation. Calculated usingglmnet::predict.coxnet()
.crank
: same aslp
.distr
: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated usingglmnet::survfit.coxnet()
. Parametersstype
andctype
relate to howlp
predictions are transformed into survival predictions and are described insurvival::survfit.coxph()
. By default the Breslow estimator is used for computing the baseline hazard.
Caution: This learner is different to learners calling glmnet::cv.glmnet()
in that it does not use the internal optimization of parameter lambda
.
Instead, lambda
needs to be tuned by the user (e.g., via mlr3tuning).
When lambda
is tuned, the glmnet
will be trained for each tuning iteration.
While fitting the whole path of lambda
s would be more efficient, as is done
by default in glmnet::glmnet()
, tuning/selecting the parameter at prediction time
(using parameter s
) is currently not supported in mlr3
(at least not in efficient manner).
Tuning the s
parameter is, therefore, currently discouraged.
When the data are i.i.d. and efficiency is key, we recommend using the respective
auto-tuning counterpart in mlr_learners_surv.cv_glmnet()
.
However, in some situations this is not applicable, usually when data are
imbalanced or not i.i.d. (longitudinal, time-series) and tuning requires
custom resampling strategies (blocked design, stratification).
Meta Information
Task type: “surv”
Predict Types: “crank”, “distr”, “lp”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, mlr3proba, mlr3extralearners, glmnet
Parameters
Id | Type | Default | Levels | Range |
alignment | character | lambda | lambda, fraction | - |
alpha | numeric | 1 | \([0, 1]\) | |
big | numeric | 9.9e+35 | \((-\infty, \infty)\) | |
devmax | numeric | 0.999 | \([0, 1]\) | |
dfmax | integer | - | \([0, \infty)\) | |
eps | numeric | 1e-06 | \([0, 1]\) | |
epsnr | numeric | 1e-08 | \([0, 1]\) | |
exact | logical | FALSE | TRUE, FALSE | - |
exclude | untyped | - | - | |
exmx | numeric | 250 | \((-\infty, \infty)\) | |
fdev | numeric | 1e-05 | \([0, 1]\) | |
gamma | untyped | - | - | |
grouped | logical | TRUE | TRUE, FALSE | - |
intercept | logical | TRUE | TRUE, FALSE | - |
keep | logical | FALSE | TRUE, FALSE | - |
lambda | untyped | - | - | |
lambda.min.ratio | numeric | - | \([0, 1]\) | |
lower.limits | untyped | -Inf | - | |
maxit | integer | 100000 | \([1, \infty)\) | |
mnlam | integer | 5 | \([1, \infty)\) | |
mxit | integer | 100 | \([1, \infty)\) | |
mxitnr | integer | 25 | \([1, \infty)\) | |
newoffset | untyped | - | - | |
nlambda | integer | 100 | \([1, \infty)\) | |
offset | untyped | NULL | - | |
parallel | logical | FALSE | TRUE, FALSE | - |
penalty.factor | untyped | - | - | |
pmax | integer | - | \([0, \infty)\) | |
pmin | numeric | 1e-09 | \([0, 1]\) | |
prec | numeric | 1e-10 | \((-\infty, \infty)\) | |
predict.gamma | numeric | gamma.1se | \((-\infty, \infty)\) | |
relax | logical | FALSE | TRUE, FALSE | - |
s | numeric | 0.01 | \([0, \infty)\) | |
standardize | logical | TRUE | TRUE, FALSE | - |
thresh | numeric | 1e-07 | \([0, \infty)\) | |
trace.it | integer | 0 | \([0, 1]\) | |
type.logistic | character | Newton | Newton, modified.Newton | - |
type.multinomial | character | ungrouped | ungrouped, grouped | - |
upper.limits | untyped | Inf | - | |
stype | integer | 2 | \([1, 2]\) | |
ctype | integer | - | \([1, 2]\) |
References
Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1–22. doi:10.18637/jss.v033.i01 .
See also
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Super classes
mlr3::Learner
-> mlr3proba::LearnerSurv
-> LearnerSurvGlmnet
Methods
Method selected_features()
Returns the set of selected features as reported by glmnet::predict.glmnet()
with type
set to "nonzero"
.
Arguments
lambda
(
numeric(1)
)
Customlambda
, defaults to the active lambda depending on parameter set.
Returns
(character()
) of feature names.
Examples
# Define the Learner
learner = mlr3::lrn("surv.glmnet")
print(learner)
#> <LearnerSurvGlmnet:surv.glmnet>: Regularized Generalized Linear Model
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3proba, mlr3extralearners, glmnet
#> * Predict Types: [crank], distr, lp
#> * Feature Types: logical, integer, numeric
#> * Properties: selected_features, weights
# Define a Task
task = mlr3::tsk("grace")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> $model
#>
#> Call: (if (cv) glmnet::cv.glmnet else glmnet::glmnet)(x = data, y = target, family = "cox")
#>
#> Df %Dev Lambda
#> 1 0 0.00 0.176700
#> 2 1 0.61 0.161000
#> 3 2 1.54 0.146700
#> 4 2 2.40 0.133700
#> 5 3 4.86 0.121800
#> 6 3 7.58 0.111000
#> 7 3 9.61 0.101100
#> 8 3 11.19 0.092120
#> 9 4 12.48 0.083940
#> 10 4 13.58 0.076480
#> 11 4 14.48 0.069690
#> 12 5 15.24 0.063500
#> 13 5 15.89 0.057860
#> 14 5 16.44 0.052720
#> 15 5 16.91 0.048030
#> 16 6 17.32 0.043770
#> 17 6 17.70 0.039880
#> 18 6 18.01 0.036340
#> 19 6 18.29 0.033110
#> 20 6 18.52 0.030170
#> 21 6 18.71 0.027490
#> 22 6 18.87 0.025040
#> 23 6 19.01 0.022820
#> 24 6 19.13 0.020790
#> 25 6 19.23 0.018950
#> 26 6 19.31 0.017260
#> 27 6 19.38 0.015730
#> 28 6 19.44 0.014330
#> 29 6 19.49 0.013060
#> 30 6 19.54 0.011900
#> 31 6 19.57 0.010840
#> 32 6 19.60 0.009878
#> 33 6 19.63 0.009001
#> 34 6 19.65 0.008201
#> 35 6 19.67 0.007472
#> 36 6 19.68 0.006809
#> 37 6 19.69 0.006204
#> 38 6 19.70 0.005653
#> 39 6 19.71 0.005150
#> 40 6 19.72 0.004693
#> 41 6 19.72 0.004276
#> 42 6 19.73 0.003896
#> 43 6 19.73 0.003550
#> 44 6 19.74 0.003235
#>
#> $x
#> age los revasc revascdays stchange sysbp
#> [1,] 32 5 1 0 1 121
#> [2,] 35 5 1 2 0 172
#> [3,] 35 10 1 9 0 106
#> [4,] 35 2 0 180 0 121
#> [5,] 38 13 1 0 1 161
#> [6,] 38 2 0 115 0 150
#> [7,] 36 1 0 180 1 155
#> [8,] 35 0 0 180 1 119
#> [9,] 38 12 1 8 1 120
#> [10,] 36 5 1 0 1 115
#> [11,] 38 16 1 10 0 160
#> [12,] 38 12 1 11 1 92
#> [13,] 40 12 1 9 0 153
#> [14,] 42 3 1 1 1 130
#> [15,] 37 1 1 0 1 146
#> [16,] 40 2 1 1 1 148
#> [17,] 38 5 1 3 0 125
#> [18,] 40 6 0 180 1 138
#> [19,] 42 2 0 180 0 100
#> [20,] 43 3 1 0 1 100
#> [21,] 41 2 1 1 0 166
#> [22,] 40 1 1 0 1 145
#> [23,] 42 4 0 180 0 162
#> [24,] 42 15 1 13 1 125
#> [25,] 40 3 1 1 0 170
#> [26,] 43 2 1 1 1 116
#> [27,] 42 2 0 180 1 124
#> [28,] 44 5 1 1 0 170
#> [29,] 41 10 1 8 0 150
#> [30,] 44 3 0 180 0 141
#> [31,] 41 13 1 1 0 140
#> [32,] 45 6 0 180 1 170
#> [33,] 41 5 1 4 1 141
#> [34,] 43 2 0 180 1 140
#> [35,] 45 2 0 180 1 140
#> [36,] 46 2 1 1 0 126
#> [37,] 48 15 0 180 1 160
#> [38,] 44 3 1 0 1 180
#> [39,] 46 7 1 2 0 166
#> [40,] 45 4 1 0 0 124
#> [41,] 43 10 0 180 0 185
#> [42,] 46 13 1 10 0 100
#> [43,] 47 4 1 3 1 160
#> [44,] 45 8 1 0 1 117
#> [45,] 45 5 0 5 0 141
#> [46,] 46 5 1 3 0 130
#> [47,] 46 4 0 180 1 121
#> [48,] 44 2 0 180 0 142
#> [49,] 46 15 0 180 1 120
#> [50,] 45 9 1 0 1 145
#> [51,] 48 12 1 11 0 200
#> [52,] 47 9 1 6 0 170
#> [53,] 49 4 0 180 0 117
#> [54,] 47 10 0 10 1 140
#> [55,] 50 1 1 0 1 129
#> [56,] 48 2 1 0 0 184
#> [57,] 47 7 0 180 0 145
#> [58,] 49 7 1 7 1 110
#> [59,] 46 9 1 9 1 122
#> [60,] 50 7 0 180 1 110
#> [61,] 49 2 0 2 0 105
#> [62,] 47 2 0 180 0 150
#> [63,] 49 23 0 179 1 112
#> [64,] 46 6 1 0 1 156
#> [65,] 52 2 0 180 1 170
#> [66,] 49 7 1 4 1 90
#> [67,] 47 8 0 180 0 160
#> [68,] 47 6 0 180 1 162
#> [69,] 51 8 0 180 1 140
#> [70,] 52 2 0 180 0 155
#> [71,] 46 3 0 180 1 120
#> [72,] 46 1 1 1 0 145
#> [73,] 53 8 0 36 1 160
#> [74,] 48 17 1 10 0 111
#> [75,] 47 2 1 1 0 110
#> [76,] 52 4 1 4 0 152
#> [77,] 49 9 1 3 0 102
#> [78,] 49 15 0 180 1 160
#> [79,] 54 17 1 12 1 102
#> [80,] 53 5 0 77 0 159
#> [81,] 53 7 1 0 0 199
#> [82,] 54 6 1 3 0 129
#> [83,] 51 3 1 1 0 140
#> [84,] 50 2 0 5 1 106
#> [85,] 50 14 1 13 0 170
#> [86,] 48 3 1 2 0 150
#> [87,] 51 25 1 1 0 202
#> [88,] 53 4 0 4 0 140
#> [89,] 52 14 1 7 1 200
#> [90,] 53 4 1 0 1 156
#> [91,] 51 13 0 99 1 160
#> [92,] 54 9 1 0 1 138
#> [93,] 49 16 0 16 0 125
#> [94,] 55 3 1 1 0 150
#> [95,] 54 23 1 10 0 131
#> [96,] 52 7 1 2 0 154
#> [97,] 54 9 1 1 0 130
#> [98,] 55 4 1 2 0 150
#> [99,] 52 4 0 180 1 180
#> [100,] 51 13 1 11 0 145
#> [101,] 50 5 1 4 1 150
#> [102,] 54 4 1 0 1 121
#> [103,] 52 4 0 180 0 183
#> [104,] 49 6 1 0 1 130
#> [105,] 49 1 0 1 1 110
#> [106,] 50 7 1 1 0 156
#> [107,] 53 9 0 9 1 95
#> [108,] 53 8 1 0 1 130
#> [109,] 50 7 1 0 1 127
#> [110,] 56 4 1 1 1 130
#> [111,] 55 2 0 2 0 145
#> [112,] 54 1 0 180 0 162
#> [113,] 54 7 1 0 1 100
#> [114,] 56 2 0 180 0 132
#> [115,] 55 5 1 4 1 120
#> [116,] 52 8 0 180 0 119
#> [117,] 53 18 1 9 1 150
#> [118,] 55 6 0 180 0 170
#> [119,] 52 16 0 16 0 152
#> [120,] 52 16 1 14 0 170
#> [121,] 53 15 0 15 1 90
#> [122,] 55 6 0 180 1 100
#> [123,] 55 6 1 5 1 138
#> [124,] 55 2 0 134 1 140
#> [125,] 54 3 0 180 0 128
#> [126,] 56 3 0 8 1 139
#> [127,] 54 2 1 1 0 135
#> [128,] 52 9 1 3 0 170
#> [129,] 57 1 0 180 1 156
#> [130,] 52 2 0 180 0 140
#> [131,] 55 11 1 7 0 104
#> [132,] 53 3 1 0 1 200
#> [133,] 57 10 0 180 1 170
#> [134,] 54 5 0 180 1 108
#> [135,] 55 3 1 1 1 156
#> [136,] 57 0 0 0 1 150
#> [137,] 53 21 1 13 1 130
#> [138,] 59 3 1 1 0 172
#> [139,] 53 15 1 10 1 130
#> [140,] 54 17 1 8 1 227
#> [141,] 55 13 0 166 1 140
#> [142,] 56 5 0 5 1 150
#> [143,] 57 4 1 2 1 185
#> [144,] 53 4 0 147 1 145
#> [145,] 53 7 1 0 1 120
#> [146,] 57 11 1 10 1 129
#> [147,] 55 3 1 2 0 140
#> [148,] 55 5 0 5 1 131
#> [149,] 54 7 1 0 1 141
#> [150,] 56 4 0 4 0 164
#> [151,] 59 15 1 10 0 140
#> [152,] 58 1 1 1 1 200
#> [153,] 55 2 0 2 0 106
#> [154,] 59 9 1 1 1 125
#> [155,] 57 1 0 180 0 148
#> [156,] 58 4 1 0 1 160
#> [157,] 57 2 0 2 1 120
#> [158,] 60 5 1 1 0 138
#> [159,] 57 5 0 180 1 130
#> [160,] 58 11 1 9 1 124
#> [161,] 55 5 1 0 1 160
#> [162,] 59 6 1 0 1 140
#> [163,] 59 5 0 180 1 155
#> [164,] 59 4 1 0 1 152
#> [165,] 61 9 0 9 1 160
#> [166,] 58 4 1 3 0 120
#> [167,] 60 0 1 0 1 80
#> [168,] 59 2 1 1 0 140
#> [169,] 58 8 0 161 1 140
#> [170,] 61 4 1 3 0 151
#> [171,] 61 9 1 8 0 150
#> [172,] 61 3 1 2 1 102
#> [173,] 58 1 0 1 1 100
#> [174,] 57 13 1 10 0 110
#> [175,] 58 10 0 10 1 150
#> [176,] 57 4 1 3 0 138
#> [177,] 57 11 0 180 1 150
#> [178,] 61 3 0 17 0 143
#> [179,] 58 19 1 13 1 140
#> [180,] 56 13 1 6 1 158
#> [181,] 56 18 1 11 1 165
#> [182,] 55 4 1 3 1 160
#> [183,] 58 11 0 172 1 135
#> [184,] 61 4 1 0 1 115
#> [185,] 56 8 1 8 0 120
#> [186,] 59 11 1 8 1 190
#> [187,] 57 1 0 1 0 126
#> [188,] 57 15 1 13 1 110
#> [189,] 58 5 1 1 1 135
#> [190,] 59 10 0 180 0 160
#> [191,] 61 8 0 77 0 120
#> [192,] 58 8 1 5 0 152
#> [193,] 62 10 1 0 1 153
#> [194,] 57 3 1 0 0 100
#> [195,] 61 18 0 170 0 140
#> [196,] 61 28 1 7 0 133
#> [197,] 58 8 1 3 1 150
#> [198,] 61 7 0 7 1 150
#> [199,] 60 7 0 7 0 147
#> [200,] 59 13 1 2 0 198
#> [201,] 57 12 1 9 1 120
#> [202,] 60 17 1 8 1 140
#> [203,] 62 4 1 3 0 173
#> [204,] 59 1 0 180 0 155
#> [205,] 59 16 1 9 1 133
#> [206,] 63 6 0 28 1 120
#> [207,] 61 13 0 13 0 120
#> [208,] 61 5 0 5 1 110
#> [209,] 61 5 0 5 1 160
#> [210,] 58 11 1 9 0 179
#> [211,] 57 2 1 1 0 159
#> [212,] 62 1 1 0 1 172
#> [213,] 58 7 0 180 1 150
#> [214,] 63 3 1 1 0 180
#> [215,] 63 1 0 180 1 130
#> [216,] 61 7 0 180 0 135
#> [217,] 63 4 1 3 0 222
#> [218,] 62 3 0 180 1 105
#> [219,] 63 4 0 180 1 190
#> [220,] 63 15 1 10 1 126
#> [221,] 64 4 0 180 0 130
#> [222,] 63 4 1 1 0 155
#> [223,] 59 8 0 180 1 140
#> [224,] 61 9 1 9 1 150
#> [225,] 58 9 1 9 0 110
#> [226,] 62 7 0 7 0 150
#> [227,] 59 1 0 22 1 162
#> [228,] 58 2 0 180 0 127
#> [229,] 60 7 1 5 1 141
#> [230,] 59 5 1 1 0 148
#> [231,] 65 13 0 180 1 100
#> [232,] 63 1 0 1 0 130
#> [233,] 62 6 0 180 0 170
#> [234,] 60 3 0 3 0 168
#> [235,] 63 12 1 10 0 200
#> [236,] 59 10 0 180 1 130
#> [237,] 61 6 1 1 1 117
#> [238,] 64 12 1 11 0 160
#> [239,] 64 6 1 0 1 140
#> [240,] 63 10 1 0 1 148
#> [241,] 66 3 1 1 0 127
#> [242,] 61 10 1 2 1 194
#> [243,] 64 32 1 9 1 160
#> [244,] 63 12 1 9 0 114
#> [245,] 63 7 0 180 0 120
#> [246,] 65 8 1 0 0 168
#> [247,] 65 10 1 8 1 120
#> [248,] 60 6 0 180 0 130
#> [249,] 64 9 0 180 0 150
#> [250,] 61 4 0 180 1 113
#> [251,] 64 7 0 180 1 120
#> [252,] 66 6 1 1 1 130
#> [253,] 63 12 0 12 1 150
#> [254,] 65 3 1 0 1 80
#> [255,] 63 5 1 4 0 170
#> [256,] 63 2 1 1 0 180
#> [257,] 67 11 0 11 1 100
#> [258,] 64 2 0 2 0 201
#> [259,] 66 18 1 5 0 142
#> [260,] 66 16 1 11 1 169
#> [261,] 62 9 0 180 0 145
#> [262,] 61 14 1 5 0 140
#> [263,] 61 15 1 10 0 130
#> [264,] 63 9 1 8 1 160
#> [265,] 64 19 1 8 1 160
#> [266,] 65 8 1 0 1 140
#> [267,] 65 15 1 11 1 160
#> [268,] 64 13 1 12 1 150
#> [269,] 64 6 1 0 1 125
#> [270,] 66 7 1 0 1 115
#> [271,] 64 14 1 13 1 150
#> [272,] 65 3 0 3 0 105
#> [273,] 64 0 0 0 1 148
#> [274,] 67 4 1 3 0 130
#> [275,] 66 3 1 0 1 135
#> [276,] 65 2 1 1 1 170
#> [277,] 68 1 0 180 1 166
#> [278,] 64 10 1 9 1 110
#> [279,] 63 7 1 0 0 162
#> [280,] 67 8 1 1 1 130
#> [281,] 68 5 0 5 1 90
#> [282,] 63 10 0 16 1 160
#> [283,] 64 1 0 1 1 120
#> [284,] 68 18 0 180 1 260
#> [285,] 65 17 1 14 1 100
#> [286,] 63 8 1 1 1 162
#> [287,] 65 18 1 3 0 120
#> [288,] 63 10 0 18 1 130
#> [289,] 67 11 0 11 0 150
#> [290,] 68 11 0 180 0 160
#> [291,] 65 15 1 12 1 150
#> [292,] 66 11 1 0 0 100
#> [293,] 69 12 0 15 1 140
#> [294,] 66 15 1 13 1 160
#> [295,] 63 2 0 180 0 150
#> [296,] 65 11 1 6 0 130
#> [297,] 69 6 0 180 1 100
#> [298,] 66 9 1 8 0 130
#> [299,] 63 8 0 180 1 120
#> [300,] 65 8 1 0 1 90
#> [301,] 66 3 0 3 1 138
#> [302,] 69 1 1 0 0 170
#> [303,] 65 1 1 0 0 133
#> [304,] 67 7 1 4 1 130
#> [305,] 67 2 0 180 0 184
#> [306,] 65 10 1 1 1 148
#> [307,] 66 19 1 12 1 150
#> [308,] 67 12 1 12 0 160
#> [309,] 69 6 0 99 1 140
#> [310,] 70 15 1 12 1 132
#> [311,] 64 11 0 11 0 125
#> [312,] 64 4 0 180 1 140
#> [313,] 64 0 1 0 1 118
#> [314,] 67 2 0 18 0 131
#> [315,] 66 4 0 180 0 177
#> [316,] 69 4 1 3 1 150
#> [317,] 65 13 1 12 1 130
#> [318,] 64 21 0 21 1 155
#> [319,] 65 1 0 1 1 120
#> [320,] 68 18 1 0 1 160
#> [321,] 65 6 0 101 1 115
#> [322,] 68 4 0 4 1 190
#> [323,] 70 7 1 0 1 190
#> [324,] 71 20 1 0 1 160
#> [325,] 67 2 0 180 0 128
#> [326,] 69 8 0 180 1 153
#> [327,] 70 14 0 171 0 166
#> [328,] 66 4 0 180 0 130
#> [329,] 67 10 1 9 0 200
#> [330,] 67 6 1 4 0 130
#> [331,] 65 2 0 180 0 130
#> [332,] 68 7 1 0 1 150
#> [333,] 69 3 1 2 0 151
#> [334,] 67 14 1 13 0 130
#> [335,] 71 7 0 7 0 230
#> [336,] 66 2 0 2 1 228
#> [337,] 71 3 0 103 0 133
#> [338,] 69 3 0 3 1 130
#> [339,] 70 22 1 13 0 103
#> [340,] 67 1 0 36 1 104
#> [341,] 67 5 0 5 0 130
#> [342,] 68 6 0 180 0 145
#> [343,] 69 8 1 5 1 195
#> [344,] 69 6 1 4 1 174
#> [345,] 72 3 1 0 1 132
#> [346,] 72 7 0 7 1 110
#> [347,] 69 8 1 7 1 108
#> [348,] 66 2 1 1 0 123
#> [349,] 69 19 0 180 0 130
#> [350,] 68 18 0 18 1 100
#> [351,] 69 11 1 0 1 120
#> [352,] 69 4 1 3 0 132
#> [353,] 68 2 0 7 1 130
#> [354,] 69 8 1 2 0 121
#> [355,] 67 13 1 9 0 130
#> [356,] 70 9 0 180 1 142
#> [357,] 72 5 1 4 0 170
#> [358,] 68 3 0 19 0 135
#> [359,] 67 12 1 8 0 120
#> [360,] 67 1 0 1 1 60
#> [361,] 67 4 0 60 1 136
#> [362,] 67 8 1 0 1 130
#> [363,] 68 10 1 8 1 160
#> [364,] 66 24 1 13 0 130
#> [365,] 70 35 1 0 1 105
#> [366,] 72 30 1 0 1 145
#> [367,] 70 7 0 7 0 102
#> [368,] 68 7 1 2 0 135
#> [369,] 73 20 1 0 1 170
#> [370,] 69 10 1 6 1 120
#> [371,] 70 11 0 180 1 210
#> [372,] 67 9 0 180 0 158
#> [373,] 73 13 0 152 1 130
#> [374,] 70 5 0 180 0 150
#> [375,] 72 2 0 2 1 100
#> [376,] 72 6 1 5 0 115
#> [377,] 69 3 0 180 0 220
#> [378,] 71 3 1 2 0 150
#> [379,] 72 5 0 28 0 120
#> [380,] 71 5 0 180 0 191
#> [381,] 73 6 0 180 1 117
#> [382,] 69 16 1 10 1 140
#> [383,] 69 8 1 1 0 164
#> [384,] 70 4 0 180 0 180
#> [385,] 69 1 1 0 0 155
#> [386,] 72 8 1 1 1 150
#> [387,] 71 2 1 0 1 180
#> [388,] 70 3 0 3 1 159
#> [389,] 70 13 1 9 0 100
#> [390,] 73 0 0 180 1 161
#> [391,] 74 8 1 0 1 85
#> [392,] 73 4 0 180 1 154
#> [393,] 74 20 0 20 1 180
#> [394,] 71 20 1 10 0 140
#> [395,] 70 5 1 0 1 190
#> [396,] 71 17 1 11 0 160
#> [397,] 71 8 1 7 0 149
#> [398,] 71 3 1 2 1 190
#> [399,] 73 10 1 8 0 106
#> [400,] 69 12 1 1 1 149
#> [401,] 70 26 1 11 1 120
#> [402,] 74 4 0 4 0 120
#> [403,] 73 4 0 58 1 160
#> [404,] 72 5 1 3 1 160
#> [405,] 70 3 0 180 1 154
#> [406,] 73 6 0 180 0 110
#> [407,] 72 15 1 0 1 150
#> [408,] 72 8 1 0 1 140
#> [409,] 73 17 1 11 0 140
#> [410,] 69 2 1 1 1 80
#> [411,] 70 4 1 0 1 140
#> [412,] 71 14 1 13 1 170
#> [413,] 72 10 1 8 1 153
#> [414,] 72 15 1 13 0 156
#> [415,] 70 8 0 8 0 120
#> [416,] 71 10 1 9 1 120
#> [417,] 75 1 0 1 0 133
#> [418,] 75 2 1 1 0 145
#> [419,] 73 10 1 9 1 146
#> [420,] 72 10 1 9 1 160
#> [421,] 73 10 1 10 1 120
#> [422,] 74 15 1 9 1 179
#> [423,] 73 1 0 1 1 80
#> [424,] 75 9 1 7 0 140
#> [425,] 75 13 1 1 1 130
#> [426,] 71 4 0 4 0 134
#> [427,] 72 15 1 12 1 120
#> [428,] 72 7 0 57 1 145
#> [429,] 73 10 0 180 0 162
#> [430,] 72 11 0 11 1 140
#> [431,] 70 3 0 3 0 150
#> [432,] 73 12 1 12 1 140
#> [433,] 72 2 0 180 0 120
#> [434,] 71 3 1 0 0 144
#> [435,] 73 5 0 180 0 126
#> [436,] 73 4 0 180 0 124
#> [437,] 74 34 1 8 1 233
#> [438,] 71 32 1 12 1 107
#> [439,] 72 5 0 180 0 154
#> [440,] 77 11 0 11 1 150
#> [441,] 77 4 0 4 0 185
#> [442,] 75 3 1 1 0 180
#> [443,] 73 15 0 15 1 160
#> [444,] 73 10 1 10 0 124
#> [445,] 74 7 0 180 1 150
#> [446,] 76 1 0 180 0 114
#> [447,] 74 2 1 1 0 140
#> [448,] 73 6 0 6 1 114
#> [449,] 75 23 1 14 1 110
#> [450,] 74 2 0 180 0 190
#> [451,] 72 4 0 85 1 120
#> [452,] 72 4 1 3 0 160
#> [453,] 73 4 1 3 1 125
#> [454,] 75 4 1 0 1 122
#> [455,] 73 13 1 11 0 195
#> [456,] 75 12 0 12 1 160
#> [457,] 74 8 1 0 1 105
#> [458,] 76 4 0 4 1 155
#> [459,] 75 1 0 1 1 125
#> [460,] 74 2 0 180 0 111
#> [461,] 73 0 0 180 0 156
#> [462,] 78 12 1 11 1 160
#> [463,] 76 44 1 10 0 105
#> [464,] 76 5 0 180 0 185
#> [465,] 74 10 1 0 1 135
#> [466,] 76 5 1 0 1 167
#> [467,] 74 8 1 8 1 170
#> [468,] 75 9 0 180 1 140
#> [469,] 77 12 0 180 0 130
#> [470,] 77 1 1 0 1 90
#> [471,] 73 7 1 0 0 174
#> [472,] 74 6 0 79 1 140
#> [473,] 74 9 1 8 0 200
#> [474,] 75 6 0 180 0 150
#> [475,] 74 2 1 0 1 130
#> [476,] 78 18 0 18 1 144
#> [477,] 74 2 0 180 0 100
#> [478,] 78 7 0 7 1 133
#> [479,] 74 15 0 180 1 172
#> [480,] 74 7 0 7 0 161
#> [481,] 76 13 1 1 1 170
#> [482,] 78 32 1 9 1 198
#> [483,] 80 10 1 6 1 147
#> [484,] 78 0 0 180 1 212
#> [485,] 75 5 0 119 1 150
#> [486,] 75 12 1 1 1 120
#> [487,] 80 8 0 8 1 120
#> [488,] 75 13 1 6 0 150
#> [489,] 74 10 1 8 0 135
#> [490,] 76 1 0 1 1 83
#> [491,] 79 4 0 80 0 145
#> [492,] 78 12 1 9 0 150
#> [493,] 78 2 1 1 0 130
#> [494,] 75 11 1 4 0 162
#> [495,] 76 7 0 29 1 150
#> [496,] 77 24 0 24 1 160
#> [497,] 80 9 0 23 1 128
#> [498,] 78 6 1 0 1 240
#> [499,] 76 3 1 0 1 140
#> [500,] 78 11 1 1 1 140
#> [501,] 79 11 0 180 0 160
#> [502,] 78 14 1 0 1 140
#> [503,] 76 4 0 4 1 160
#> [504,] 79 4 0 4 1 125
#> [505,] 76 12 1 10 1 127
#> [506,] 77 6 0 6 1 107
#> [507,] 80 3 1 0 1 120
#> [508,] 75 2 1 1 1 204
#> [509,] 78 11 0 180 1 135
#> [510,] 76 1 0 1 1 140
#> [511,] 77 31 1 3 1 161
#> [512,] 79 3 0 3 0 120
#> [513,] 77 7 0 180 1 170
#> [514,] 79 4 1 0 1 120
#> [515,] 81 1 0 180 0 120
#> [516,] 82 5 0 8 1 120
#> [517,] 80 40 1 0 1 138
#> [518,] 80 6 0 173 1 160
#> [519,] 79 1 0 37 1 140
#> [520,] 81 3 0 180 0 184
#> [521,] 78 15 0 15 0 165
#> [522,] 80 5 1 1 1 108
#> [523,] 78 4 0 180 0 175
#> [524,] 79 3 0 3 1 101
#> [525,] 78 26 1 5 0 194
#> [526,] 76 1 0 166 0 131
#> [527,] 81 4 1 1 1 104
#> [528,] 78 20 1 0 1 109
#> [529,] 78 3 1 1 1 152
#> [530,] 77 5 0 85 0 188
#> [531,] 80 2 1 1 0 168
#> [532,] 78 2 0 180 0 148
#> [533,] 80 5 0 5 1 130
#> [534,] 82 1 1 0 1 82
#> [535,] 79 10 0 180 1 150
#> [536,] 78 12 0 180 0 134
#> [537,] 79 1 0 125 0 193
#> [538,] 82 21 1 2 0 155
#> [539,] 84 22 1 10 0 180
#> [540,] 83 9 1 5 1 170
#> [541,] 82 5 0 180 0 110
#> [542,] 83 5 0 180 0 148
#> [543,] 79 7 1 6 0 130
#> [544,] 83 4 0 103 0 97
#> [545,] 81 11 1 8 0 160
#> [546,] 80 11 1 8 0 170
#> [547,] 78 23 1 10 1 145
#> [548,] 79 4 0 4 1 183
#> [549,] 78 9 1 4 1 120
#> [550,] 82 8 1 1 0 128
#> [551,] 80 7 1 0 1 146
#> [552,] 84 5 1 1 1 85
#> [553,] 83 8 0 8 0 115
#> [554,] 81 16 0 16 1 110
#> [555,] 80 6 1 0 1 150
#> [556,] 80 11 1 8 0 110
#> [557,] 81 8 0 180 0 146
#> [558,] 80 8 1 7 0 160
#> [559,] 79 7 0 177 0 197
#> [560,] 85 4 0 180 0 90
#> [561,] 81 2 1 1 0 198
#> [562,] 82 6 0 128 1 100
#> [563,] 84 4 0 167 0 198
#> [564,] 80 3 1 1 1 230
#> [565,] 82 23 1 0 0 110
#> [566,] 84 5 0 180 1 203
#> [567,] 84 4 0 4 1 85
#> [568,] 81 1 0 1 1 150
#> [569,] 83 3 0 180 0 174
#> [570,] 79 9 1 8 0 150
#> [571,] 85 3 1 2 1 160
#> [572,] 84 4 0 89 1 129
#> [573,] 80 6 0 71 1 189
#> [574,] 83 1 0 1 1 100
#> [575,] 82 19 0 19 0 120
#> [576,] 80 30 1 13 0 220
#> [577,] 83 9 0 180 0 198
#> [578,] 79 14 1 0 0 110
#> [579,] 83 3 0 114 0 98
#> [580,] 82 0 0 2 1 100
#> [581,] 85 9 1 6 1 160
#> [582,] 83 1 0 180 0 160
#> [583,] 81 4 0 4 0 175
#> [584,] 81 1 0 1 1 145
#> [585,] 81 12 0 12 1 163
#> [586,] 82 16 1 8 0 103
#> [587,] 81 4 0 4 0 160
#> [588,] 86 12 0 180 1 120
#> [589,] 83 12 1 2 1 170
#> [590,] 82 3 1 2 0 130
#> [591,] 82 15 1 0 0 183
#> [592,] 86 8 0 8 1 132
#> [593,] 84 6 0 165 0 145
#> [594,] 86 3 0 3 1 140
#> [595,] 84 3 0 180 1 120
#> [596,] 81 2 1 0 1 118
#> [597,] 81 4 0 180 0 160
#> [598,] 83 9 0 180 1 149
#> [599,] 82 1 0 180 1 193
#> [600,] 83 4 0 4 0 130
#> [601,] 87 2 0 5 1 137
#> [602,] 86 12 1 0 1 132
#> [603,] 82 14 1 11 1 103
#> [604,] 86 6 1 0 1 140
#> [605,] 83 19 0 43 0 150
#> [606,] 84 3 1 2 0 125
#> [607,] 83 10 1 0 1 190
#> [608,] 84 3 0 3 1 121
#> [609,] 83 13 1 12 0 170
#> [610,] 84 9 0 92 1 110
#> [611,] 84 3 0 180 1 170
#> [612,] 86 4 0 38 1 122
#> [613,] 82 4 0 4 0 130
#> [614,] 86 13 0 177 0 163
#> [615,] 85 3 0 3 1 113
#> [616,] 86 6 0 6 1 117
#> [617,] 84 13 0 62 1 100
#> [618,] 83 20 1 3 1 150
#> [619,] 88 4 0 4 1 115
#> [620,] 86 6 0 46 0 173
#> [621,] 88 2 0 180 1 68
#> [622,] 87 8 0 8 1 157
#> [623,] 86 15 1 8 1 109
#> [624,] 89 4 0 4 1 153
#> [625,] 89 5 0 119 1 140
#> [626,] 87 6 0 180 1 110
#> [627,] 87 1 0 1 0 170
#> [628,] 84 8 0 180 1 119
#> [629,] 85 8 0 8 1 136
#> [630,] 84 2 0 110 1 174
#> [631,] 87 29 0 29 1 97
#> [632,] 87 15 1 9 1 138
#> [633,] 90 14 0 14 1 100
#> [634,] 86 4 0 180 1 145
#> [635,] 91 8 0 8 0 100
#> [636,] 87 2 0 180 0 160
#> [637,] 87 6 1 0 0 125
#> [638,] 86 3 1 0 1 80
#> [639,] 88 7 0 24 0 119
#> [640,] 90 11 1 10 1 186
#> [641,] 87 6 0 126 1 168
#> [642,] 86 10 0 180 1 137
#> [643,] 90 4 1 0 0 121
#> [644,] 91 1 0 1 1 74
#> [645,] 87 43 0 178 1 130
#> [646,] 89 3 1 1 1 160
#> [647,] 88 5 0 158 0 100
#> [648,] 89 12 1 0 1 130
#> [649,] 91 5 0 169 1 176
#> [650,] 89 52 0 52 1 130
#> [651,] 92 7 0 7 1 110
#> [652,] 91 0 0 0 0 0
#> [653,] 89 14 0 180 1 84
#> [654,] 90 18 0 180 0 188
#> [655,] 91 4 1 0 1 120
#> [656,] 90 19 1 11 1 129
#> [657,] 94 6 0 50 0 78
#> [658,] 90 1 0 1 1 118
#> [659,] 93 8 0 179 1 110
#> [660,] 92 4 0 76 1 149
#> [661,] 90 3 0 67 0 162
#> [662,] 96 3 0 12 1 97
#> [663,] 95 8 1 5 1 150
#> [664,] 91 12 0 53 1 212
#> [665,] 91 7 0 7 0 135
#> [666,] 93 0 1 0 1 122
#> [667,] 92 2 0 2 0 112
#> [668,] 93 4 0 180 1 135
#> [669,] 96 3 1 0 1 104
#> [670,] 96 15 1 0 1 140
#>
#> $y
#> [1] 5.0+ 5.0+ 180.0+ 180.0+ 180.0+ 115.0 180.0+ 180.0+ 12.0 5.0+
#> [11] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 2.0+ 5.0+ 180.0+ 180.0+ 3.0
#> [21] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 2.0+ 180.0+ 155.0+ 180.0+ 180.0+
#> [31] 180.0+ 180.0+ 5.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [41] 180.0+ 180.0+ 180.0+ 180.0+ 5.0+ 5.0+ 180.0+ 180.0+ 180.0+ 177.0+
#> [51] 180.0+ 180.0+ 180.0+ 10.0+ 172.0+ 180.0+ 180.0+ 7.0 180.0+ 180.0+
#> [61] 2.0 180.0+ 179.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [71] 180.0+ 180.0+ 36.0 88.0+ 180.0+ 4.0+ 180.0+ 180.0+ 180.0+ 77.0
#> [81] 180.0+ 180.0+ 180.0+ 5.0 180.0+ 180.0+ 180.0+ 4.0+ 85.0 166.0+
#> [91] 99.0 180.0+ 16.0+ 180.0+ 152.0+ 7.0+ 180.0+ 180.0+ 180.0+ 13.0+
#> [101] 171.0+ 180.0+ 180.0+ 6.0+ 1.0 180.0+ 9.0+ 180.0+ 180.0+ 180.0+
#> [111] 2.0 180.0+ 7.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 16.0+ 16.0
#> [121] 15.0+ 180.0+ 180.0+ 134.0+ 180.0+ 8.0 180.0+ 180.0+ 180.0+ 180.0+
#> [131] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 0.5 180.0+ 180.0+ 180.0+ 171.0+
#> [141] 166.0+ 5.0+ 4.0+ 147.0+ 180.0+ 180.0+ 180.0+ 5.0+ 180.0+ 4.0+
#> [151] 180.0+ 1.0 2.0+ 180.0+ 180.0+ 180.0+ 2.0 180.0+ 180.0+ 180.0+
#> [161] 180.0+ 64.0 180.0+ 180.0+ 9.0+ 180.0+ 0.5 180.0+ 161.0+ 180.0+
#> [171] 180.0+ 3.0 1.0 180.0+ 10.0+ 180.0+ 180.0+ 17.0 19.0 180.0+
#> [181] 180.0+ 180.0+ 172.0+ 180.0+ 8.0 180.0+ 1.0+ 15.0 180.0+ 180.0+
#> [191] 77.0 8.0+ 180.0+ 180.0+ 170.0 94.0 180.0+ 7.0 7.0+ 180.0+
#> [201] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 28.0 13.0+ 5.0 5.0+ 180.0+
#> [211] 180.0+ 1.0 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [221] 180.0+ 4.0+ 180.0+ 180.0+ 9.0 7.0+ 22.0 180.0+ 84.0 180.0+
#> [231] 180.0+ 1.0 180.0+ 3.0+ 180.0+ 180.0+ 180.0+ 12.0 180.0+ 180.0+
#> [241] 3.0+ 88.0 180.0+ 12.0 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [251] 180.0+ 180.0+ 12.0 3.0 180.0+ 180.0+ 11.0+ 2.0+ 18.0+ 180.0+
#> [261] 180.0+ 180.0+ 180.0+ 180.0+ 103.0 15.0 180.0+ 13.0 180.0+ 179.0+
#> [271] 14.0+ 3.0 0.5+ 180.0+ 3.0+ 175.0+ 180.0+ 180.0+ 7.0+ 8.0
#> [281] 5.0 16.0 1.0 180.0+ 180.0+ 180.0+ 123.0+ 18.0 11.0+ 180.0+
#> [291] 15.0+ 180.0+ 15.0 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 8.0+
#> [301] 3.0 175.0 180.0+ 180.0+ 180.0+ 180.0+ 19.0+ 12.0 99.0 180.0+
#> [311] 11.0+ 180.0+ 0.5 18.0 180.0+ 152.0+ 180.0+ 21.0+ 1.0 18.0+
#> [321] 101.0 4.0 7.0+ 180.0+ 180.0+ 180.0+ 171.0 180.0+ 174.0+ 6.0
#> [331] 180.0+ 180.0+ 180.0+ 180.0+ 7.0+ 2.0 103.0 3.0+ 180.0+ 36.0
#> [341] 5.0+ 180.0+ 180.0+ 97.0 180.0+ 7.0 8.0+ 2.0+ 180.0+ 18.0
#> [351] 180.0+ 180.0+ 7.0 8.0+ 13.0+ 180.0+ 180.0+ 19.0 180.0+ 1.0
#> [361] 60.0 180.0+ 10.0+ 180.0+ 180.0+ 162.0 7.0+ 7.0+ 124.0 180.0+
#> [371] 180.0+ 180.0+ 152.0 180.0+ 2.0 180.0+ 180.0+ 180.0+ 28.0 180.0+
#> [381] 180.0+ 16.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 3.0+ 13.0+ 180.0+
#> [391] 180.0+ 180.0+ 20.0 20.0 180.0+ 180.0+ 8.0 3.0 87.0 12.0
#> [401] 180.0+ 4.0+ 58.0 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 2.0
#> [411] 180.0+ 14.0+ 10.0+ 180.0+ 8.0+ 179.0+ 1.0 180.0+ 180.0+ 159.0
#> [421] 15.0 180.0+ 1.0 180.0+ 13.0 4.0+ 180.0+ 57.0 180.0+ 11.0
#> [431] 3.0+ 12.0 180.0+ 180.0+ 180.0+ 180.0+ 34.0 177.0+ 180.0+ 11.0+
#> [441] 4.0+ 180.0+ 15.0+ 10.0 180.0+ 180.0+ 180.0+ 6.0 180.0+ 180.0+
#> [451] 85.0 180.0+ 180.0+ 4.0 180.0+ 12.0 180.0+ 4.0 1.0 180.0+
#> [461] 180.0+ 12.0 180.0+ 180.0+ 180.0+ 180.0+ 8.0 180.0+ 180.0+ 1.0
#> [471] 7.0+ 79.0 168.0+ 180.0+ 176.0+ 18.0 180.0+ 7.0 180.0+ 7.0
#> [481] 180.0+ 32.0 10.0 180.0+ 119.0 12.0 8.0 180.0+ 180.0+ 1.0
#> [491] 80.0 180.0+ 180.0+ 152.0+ 29.0 24.0 23.0 180.0+ 3.0+ 180.0+
#> [501] 180.0+ 180.0+ 4.0 4.0 180.0+ 6.0 3.0+ 2.0+ 180.0+ 1.0
#> [511] 171.0 3.0 180.0+ 138.0 180.0+ 8.0 40.0 173.0 37.0 180.0+
#> [521] 15.0+ 5.0+ 180.0+ 3.0 171.0+ 166.0+ 71.0 20.0+ 3.0+ 85.0
#> [531] 10.0 180.0+ 5.0 1.0 180.0+ 180.0+ 125.0 180.0+ 180.0+ 9.0+
#> [541] 180.0+ 180.0+ 180.0+ 103.0 180.0+ 169.0 70.0 4.0 180.0+ 180.0+
#> [551] 7.0+ 180.0+ 8.0+ 16.0 180.0+ 180.0+ 180.0+ 180.0+ 177.0+ 180.0+
#> [561] 180.0+ 128.0 167.0 3.0+ 62.0 180.0+ 4.0 1.0 180.0+ 180.0+
#> [571] 180.0+ 89.0 71.0 1.0 19.0 30.0 180.0+ 180.0+ 114.0 2.0
#> [581] 180.0+ 180.0+ 4.0+ 1.0 12.0 16.0+ 4.0+ 180.0+ 77.0 3.0
#> [591] 83.0 8.0 165.0 3.0 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 4.0+
#> [601] 5.0 180.0+ 174.0 6.0 43.0 180.0+ 180.0+ 3.0 13.0 92.0
#> [611] 180.0+ 38.0 4.0 177.0 3.0+ 6.0+ 62.0 20.0 4.0 46.0
#> [621] 180.0+ 8.0+ 180.0+ 4.0 119.0 180.0+ 1.0+ 180.0+ 8.0 110.0
#> [631] 29.0 180.0+ 14.0 180.0+ 8.0 180.0+ 25.0 3.0 24.0 11.0
#> [641] 126.0 180.0+ 4.0 1.0 178.0+ 3.0+ 158.0 180.0+ 169.0 52.0
#> [651] 7.0 0.5 180.0+ 180.0+ 4.0 180.0+ 50.0 1.0+ 179.0+ 76.0
#> [661] 67.0 12.0 8.0 53.0 7.0+ 0.5 2.0 180.0+ 3.0 15.0+
#>
#> $weights
#> NULL
#>
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
#> Warning: Multiple lambdas have been fit. Lambda will be set to 0.01 (see parameter 's').
# Score the predictions
predictions$score()
#> surv.cindex
#> 0.830929