Skip to contents

Generalized linear models with elastic net regularization. Calls glmnet::glmnet() from package glmnet.

Initial parameter values

  • family is set to "cox" and cannot be changed.

Prediction types

This learner returns three prediction types:

  1. lp: a vector containing the linear predictors (relative risk scores), where each score corresponds to a specific test observation. Calculated using glmnet::predict.coxnet().

  2. crank: same as lp.

  3. distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated using glmnet::survfit.coxnet(). Parameters stype and ctype relate to how lp predictions are transformed into survival predictions and are described in survival::survfit.coxph(). By default the Breslow estimator is used for computing the baseline hazard.

Caution: This learner is different to learners calling glmnet::cv.glmnet() in that it does not use the internal optimization of parameter lambda. Instead, lambda needs to be tuned by the user (e.g., via mlr3tuning). When lambda is tuned, the glmnet will be trained for each tuning iteration. While fitting the whole path of lambdas would be more efficient, as is done by default in glmnet::glmnet(), tuning/selecting the parameter at prediction time (using parameter s) is currently not supported in mlr3 (at least not in efficient manner). Tuning the s parameter is, therefore, currently discouraged.

When the data are i.i.d. and efficiency is key, we recommend using the respective auto-tuning counterpart in mlr_learners_surv.cv_glmnet(). However, in some situations this is not applicable, usually when data are imbalanced or not i.i.d. (longitudinal, time-series) and tuning requires custom resampling strategies (blocked design, stratification).

Offset

If a Task contains a column with the offset role, it is automatically incorporated during training via the offset argument in glmnet::glmnet(). During prediction, the offset column from the test set is used only if use_pred_offset = TRUE (default), passed via the newoffset argument in glmnet::predict.coxnet(). Otherwise, if the user sets use_pred_offset = FALSE, a zero offset is applied, effectively disabling the offset adjustment during prediction.

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.glmnet")

Meta Information

  • Task type: “surv”

  • Predict Types: “crank”, “distr”, “lp”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, mlr3proba, mlr3extralearners, glmnet

Parameters

IdTypeDefaultLevelsRange
alignmentcharacterlambdalambda, fraction-
alphanumeric1\([0, 1]\)
bignumeric9.9e+35\((-\infty, \infty)\)
devmaxnumeric0.999\([0, 1]\)
dfmaxinteger-\([0, \infty)\)
epsnumeric1e-06\([0, 1]\)
epsnrnumeric1e-08\([0, 1]\)
exactlogicalFALSETRUE, FALSE-
excludeuntyped--
exmxnumeric250\((-\infty, \infty)\)
fdevnumeric1e-05\([0, 1]\)
gammauntyped--
groupedlogicalTRUETRUE, FALSE-
interceptlogicalTRUETRUE, FALSE-
keeplogicalFALSETRUE, FALSE-
lambdauntyped--
lambda.min.rationumeric-\([0, 1]\)
lower.limitsuntyped-Inf-
maxitinteger100000\([1, \infty)\)
mnlaminteger5\([1, \infty)\)
mxitinteger100\([1, \infty)\)
mxitnrinteger25\([1, \infty)\)
nlambdainteger100\([1, \infty)\)
use_pred_offsetlogicalTRUETRUE, FALSE-
parallellogicalFALSETRUE, FALSE-
penalty.factoruntyped--
pmaxinteger-\([0, \infty)\)
pminnumeric1e-09\([0, 1]\)
precnumeric1e-10\((-\infty, \infty)\)
predict.gammanumericgamma.1se\((-\infty, \infty)\)
relaxlogicalFALSETRUE, FALSE-
snumeric0.01\([0, \infty)\)
standardizelogicalTRUETRUE, FALSE-
threshnumeric1e-07\([0, \infty)\)
trace.itinteger0\([0, 1]\)
type.logisticcharacterNewtonNewton, modified.Newton-
type.multinomialcharacterungroupedungrouped, grouped-
upper.limitsuntypedInf-
stypeinteger2\([1, 2]\)
ctypeinteger-\([1, 2]\)

References

Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1–22. doi:10.18637/jss.v033.i01 .

See also

Author

be-marc

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvGlmnet

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method selected_features()

Returns the set of selected features as reported by glmnet::predict.glmnet() with type set to "nonzero".

Usage

LearnerSurvGlmnet$selected_features(lambda = NULL)

Arguments

lambda

(numeric(1))
Custom lambda, defaults to the active lambda depending on parameter set.

Returns

(character()) of feature names.


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerSurvGlmnet$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = mlr3::lrn("surv.glmnet")
print(learner)
#> <LearnerSurvGlmnet:surv.glmnet>: Regularized Generalized Linear Model
#> * Model: -
#> * Parameters: use_pred_offset=TRUE
#> * Packages: mlr3, mlr3proba, mlr3extralearners, glmnet
#> * Predict Types:  [crank], distr, lp
#> * Feature Types: logical, integer, numeric
#> * Properties: offset, selected_features, weights

# Define a Task
task = mlr3::tsk("grace")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> $model
#> 
#> Call:  (if (cv) glmnet::cv.glmnet else glmnet::glmnet)(x = data, y = target,      family = "cox") 
#> 
#>    Df  %Dev   Lambda
#> 1   0  0.00 0.197200
#> 2   1  0.68 0.179600
#> 3   1  1.26 0.163700
#> 4   2  2.14 0.149100
#> 5   2  2.98 0.135900
#> 6   3  4.95 0.123800
#> 7   3  7.63 0.112800
#> 8   3  9.63 0.102800
#> 9   3 11.18 0.093670
#> 10  3 12.43 0.085350
#> 11  3 13.44 0.077760
#> 12  3 14.28 0.070860
#> 13  3 14.98 0.064560
#> 14  3 15.56 0.058830
#> 15  4 16.07 0.053600
#> 16  4 16.51 0.048840
#> 17  4 16.89 0.044500
#> 18  4 17.21 0.040550
#> 19  4 17.48 0.036940
#> 20  5 17.71 0.033660
#> 21  5 17.92 0.030670
#> 22  5 18.10 0.027950
#> 23  6 18.25 0.025460
#> 24  6 18.38 0.023200
#> 25  6 18.50 0.021140
#> 26  6 18.59 0.019260
#> 27  6 18.67 0.017550
#> 28  6 18.74 0.015990
#> 29  6 18.80 0.014570
#> 30  6 18.85 0.013280
#> 31  6 18.89 0.012100
#> 32  6 18.92 0.011020
#> 33  6 18.95 0.010040
#> 34  6 18.97 0.009151
#> 35  6 18.99 0.008338
#> 36  6 19.01 0.007598
#> 37  6 19.02 0.006923
#> 38  6 19.03 0.006308
#> 39  6 19.04 0.005747
#> 40  6 19.05 0.005237
#> 41  6 19.06 0.004772
#> 42  6 19.07 0.004348
#> 43  6 19.07 0.003961
#> 44  6 19.07 0.003610
#> 45  6 19.08 0.003289
#> 
#> $x
#>        age los revasc revascdays stchange sysbp
#>   [1,]  28   9      0        180        1   107
#>   [2,]  32   5      1          0        1   121
#>   [3,]  33   2      0          2        0   150
#>   [4,]  35   5      1          2        0   172
#>   [5,]  34   5      0          5        0   120
#>   [6,]  35   2      0        180        0   121
#>   [7,]  35   2      1          1        1   112
#>   [8,]  38   2      0        115        0   150
#>   [9,]  36   1      0        180        1   155
#>  [10,]  36   5      1          0        1   115
#>  [11,]  33   6      1          1        1   115
#>  [12,]  38  16      1         10        0   160
#>  [13,]  38  12      1         11        1    92
#>  [14,]  40  12      1          9        0   153
#>  [15,]  42   3      1          1        1   130
#>  [16,]  37   1      1          0        1   146
#>  [17,]  42   2      0        180        1   100
#>  [18,]  42   2      0          2        0   140
#>  [19,]  40   6      0        180        1   138
#>  [20,]  40  11      1         10        1   120
#>  [21,]  42   2      0        180        0   100
#>  [22,]  43   3      1          0        1   100
#>  [23,]  40   1      1          0        1   145
#>  [24,]  43   4      1          0        1   130
#>  [25,]  42   4      0        180        0   162
#>  [26,]  40   3      1          1        0   170
#>  [27,]  43   2      1          1        1   116
#>  [28,]  44   5      1          1        0   170
#>  [29,]  45   3      0        180        1   154
#>  [30,]  44   3      0        180        0   141
#>  [31,]  45   9      1          7        0   110
#>  [32,]  41   5      1          4        1   141
#>  [33,]  44   2      1          1        1   150
#>  [34,]  43   2      0        180        1   140
#>  [35,]  45   2      0        180        1   140
#>  [36,]  46  15      0        180        0   120
#>  [37,]  47   4      1          3        0   118
#>  [38,]  45   3      0        150        0   130
#>  [39,]  46   7      1          2        0   166
#>  [40,]  43  10      0        180        0   185
#>  [41,]  47   4      1          3        1   160
#>  [42,]  43   3      1          0        1   124
#>  [43,]  45   5      0          5        0   141
#>  [44,]  46   2      1          1        1   122
#>  [45,]  46   6      1          0        1   100
#>  [46,]  44   4      1          0        1   114
#>  [47,]  47   2      0        180        0   108
#>  [48,]  44   9      1          8        1   135
#>  [49,]  45   5      0        180        1   190
#>  [50,]  46   5      1          3        0   130
#>  [51,]  46   4      0        180        1   121
#>  [52,]  44   2      0        180        0   142
#>  [53,]  46  15      0        180        1   120
#>  [54,]  45   9      1          0        1   145
#>  [55,]  47   3      1          1        1   120
#>  [56,]  48   3      0        180        0   154
#>  [57,]  47   5      1          3        1   130
#>  [58,]  47   9      1          6        0   170
#>  [59,]  46   3      1          0        1   119
#>  [60,]  49   4      0        180        0   117
#>  [61,]  50   1      1          0        1   129
#>  [62,]  48   2      1          0        0   184
#>  [63,]  47   7      0        180        0   145
#>  [64,]  50   4      1          1        0   125
#>  [65,]  50   6      1          2        1   140
#>  [66,]  49   7      1          7        1   110
#>  [67,]  46   3      1          1        1   140
#>  [68,]  46   9      1          9        1   122
#>  [69,]  50   7      0        180        1   110
#>  [70,]  49   2      0          2        0   105
#>  [71,]  51   1      0          1        1   145
#>  [72,]  49  15      1         11        1   160
#>  [73,]  49  23      0        179        1   112
#>  [74,]  46   6      1          0        1   156
#>  [75,]  50   7      1          0        1    92
#>  [76,]  51   3      1          2        0   113
#>  [77,]  51   8      0        180        1   140
#>  [78,]  52   2      0        180        0   155
#>  [79,]  46   3      0        180        1   120
#>  [80,]  46   1      1          1        0   145
#>  [81,]  48   7      1          0        1   110
#>  [82,]  48  17      1         10        0   111
#>  [83,]  47   2      1          1        0   110
#>  [84,]  52   4      1          4        0   152
#>  [85,]  49   9      1          3        0   102
#>  [86,]  49  15      0        180        1   160
#>  [87,]  54  17      1         12        1   102
#>  [88,]  53   5      0         77        0   159
#>  [89,]  53   7      1          0        0   199
#>  [90,]  51   3      1          1        0   140
#>  [91,]  50   2      0          5        1   106
#>  [92,]  53   8      1          7        0   160
#>  [93,]  48   3      1          2        0   150
#>  [94,]  49   5      1          2        1   150
#>  [95,]  53   4      0          4        0   140
#>  [96,]  52  14      1          7        1   200
#>  [97,]  53   4      1          0        1   156
#>  [98,]  51  13      0         99        1   160
#>  [99,]  54   9      1          0        1   138
#> [100,]  49  16      0         16        0   125
#> [101,]  55   3      1          1        0   150
#> [102,]  54  23      1         10        0   131
#> [103,]  55   6      1          2        1   114
#> [104,]  55   4      1          2        0   150
#> [105,]  52   4      0        180        1   180
#> [106,]  50   5      1          4        1   150
#> [107,]  52   4      0        180        0   183
#> [108,]  50   3      0        174        1   153
#> [109,]  49   6      1          0        1   130
#> [110,]  49   1      0          1        1   110
#> [111,]  53   9      0          9        1    95
#> [112,]  53   8      1          0        1   130
#> [113,]  50   7      1          0        1   127
#> [114,]  56   4      1          1        1   130
#> [115,]  52   5      0        175        1   117
#> [116,]  55   1      0        180        0   127
#> [117,]  55   2      0          2        0   145
#> [118,]  54   1      0        180        0   162
#> [119,]  56   2      0        180        0   132
#> [120,]  52   8      0        180        0   119
#> [121,]  54   3      0        180        1   180
#> [122,]  55   6      0        180        0   170
#> [123,]  52  16      0         16        0   152
#> [124,]  53  10      1          9        0   172
#> [125,]  53  15      0         15        1    90
#> [126,]  53   4      0        180        1   150
#> [127,]  55   6      0        180        1   100
#> [128,]  55   6      1          5        1   138
#> [129,]  54  12      1          0        1   190
#> [130,]  55   2      0        134        1   140
#> [131,]  54   3      0        180        0   128
#> [132,]  55   1      0          2        0   130
#> [133,]  57   3      0          3        0   120
#> [134,]  54   7      1          2        0   129
#> [135,]  52   9      1          3        0   170
#> [136,]  56   4      1          0        1   140
#> [137,]  52   2      0        180        0   140
#> [138,]  55  11      1          7        0   104
#> [139,]  56  14      1         11        0   130
#> [140,]  53   3      1          0        1   200
#> [141,]  57  10      0        180        1   170
#> [142,]  58   8      0          8        1   130
#> [143,]  54   5      0        180        1   108
#> [144,]  55   3      1          1        1   156
#> [145,]  57   0      0          0        1   150
#> [146,]  53  15      1         10        1   130
#> [147,]  55   9      1          2        1   147
#> [148,]  55  13      0        166        1   140
#> [149,]  56   5      0          5        1   150
#> [150,]  57   4      1          2        1   185
#> [151,]  53   4      0        147        1   145
#> [152,]  53   7      1          0        1   120
#> [153,]  57  11      1         10        1   129
#> [154,]  55   3      1          2        0   140
#> [155,]  56   4      0          4        0   164
#> [156,]  59  15      1         10        0   140
#> [157,]  58   9      1          0        1   180
#> [158,]  58   1      1          1        1   200
#> [159,]  56   7      1          5        1   120
#> [160,]  59   9      1          1        1   125
#> [161,]  60  11      1          9        0   106
#> [162,]  59   3      0        180        0   120
#> [163,]  58   4      1          0        1   160
#> [164,]  57   2      0          2        1   120
#> [165,]  57   5      0        180        1   130
#> [166,]  58  11      1          9        1   124
#> [167,]  57  10      1          9        0   103
#> [168,]  59   6      1          0        1   140
#> [169,]  59   5      0        180        1   155
#> [170,]  59   4      1          0        1   152
#> [171,]  58   4      1          3        0   120
#> [172,]  59   2      1          1        0   140
#> [173,]  58   8      0        161        1   140
#> [174,]  58  14      1          6        0   190
#> [175,]  61   4      1          3        0   151
#> [176,]  61   9      1          8        0   150
#> [177,]  61   3      1          2        1   102
#> [178,]  61  20      1         13        0   130
#> [179,]  57   4      1          3        0   138
#> [180,]  57  11      0        180        1   150
#> [181,]  61   3      0         17        0   143
#> [182,]  57   3      1          2        0   120
#> [183,]  58  19      1         13        1   140
#> [184,]  56  18      1         11        1   165
#> [185,]  55   4      1          3        1   160
#> [186,]  60  12      1          0        1   114
#> [187,]  56   8      1          8        0   120
#> [188,]  61  13      1         12        1   130
#> [189,]  59  11      1          8        1   190
#> [190,]  57   1      0          1        0   126
#> [191,]  57  15      1         13        1   110
#> [192,]  59   5      1          2        0   182
#> [193,]  58   5      1          1        1   135
#> [194,]  59  10      0        180        0   160
#> [195,]  61   8      0         77        0   120
#> [196,]  61  13      0         13        0   210
#> [197,]  62  10      1          0        1   153
#> [198,]  62   7      1          2        1   180
#> [199,]  57   3      1          0        0   100
#> [200,]  61  28      1          7        0   133
#> [201,]  58   8      1          3        1   150
#> [202,]  57   7      0        169        0   180
#> [203,]  61   7      0          7        1   150
#> [204,]  60   7      0          7        0   147
#> [205,]  61   6      0          6        0   134
#> [206,]  59  13      1          2        0   198
#> [207,]  57  12      1          9        1   120
#> [208,]  58   3      1          0        1   146
#> [209,]  59   1      0        180        0   155
#> [210,]  59  16      1          9        1   133
#> [211,]  63   6      0         28        1   120
#> [212,]  61  13      0         13        0   120
#> [213,]  61   5      0          5        1   110
#> [214,]  61   5      0          5        1   160
#> [215,]  58  11      1          9        0   179
#> [216,]  62  17      1         10        1   180
#> [217,]  62   1      1          0        1   172
#> [218,]  58   7      0        180        1   150
#> [219,]  63   3      1          1        0   180
#> [220,]  63   1      0        180        1   130
#> [221,]  61   7      0        180        0   135
#> [222,]  62   3      0        180        1   105
#> [223,]  63   4      0        180        1   190
#> [224,]  64   4      0        180        0   130
#> [225,]  63   4      1          1        0   155
#> [226,]  60  18      1         13        0   132
#> [227,]  59   8      0        180        1   140
#> [228,]  58   9      1          9        0   110
#> [229,]  58   2      0        180        0   127
#> [230,]  60   7      1          5        1   141
#> [231,]  60   7      0          7        0   140
#> [232,]  60   7      1          1        1    90
#> [233,]  65  13      0        180        1   100
#> [234,]  63   1      0          1        0   162
#> [235,]  62   6      0        180        0   170
#> [236,]  61  15      1         13        0   170
#> [237,]  59   4      0          4        0   149
#> [238,]  64  10      1          9        0   160
#> [239,]  62   6      0          6        0   120
#> [240,]  59  10      0        180        1   130
#> [241,]  61   6      1          1        1   117
#> [242,]  64  12      1         11        0   160
#> [243,]  66   1      1          0        1   120
#> [244,]  64   6      1          0        1   140
#> [245,]  63  10      1          0        1   148
#> [246,]  65  36      1         11        0   140
#> [247,]  63   4      1          3        0   162
#> [248,]  66   3      1          1        0   127
#> [249,]  61  10      1          2        1   194
#> [250,]  64  32      1          9        1   160
#> [251,]  63  12      1          9        0   114
#> [252,]  63   7      0        180        0   120
#> [253,]  66   5      1          0        1   110
#> [254,]  65   8      1          0        0   168
#> [255,]  65  10      1          8        1   120
#> [256,]  64   0      0          0        1    90
#> [257,]  60   6      0        180        0   130
#> [258,]  61  12      1         11        0   154
#> [259,]  64   9      0        180        0   150
#> [260,]  61   4      0        180        1   113
#> [261,]  66   6      1          1        1   130
#> [262,]  62   3      1          1        1   199
#> [263,]  65   3      1          0        1    80
#> [264,]  63   5      1          4        0   170
#> [265,]  63   2      1          1        0   180
#> [266,]  62  13      1         11        0   180
#> [267,]  67  11      0         11        1   100
#> [268,]  64   2      0          2        0   201
#> [269,]  66  18      1          5        0   142
#> [270,]  66  16      1         11        1   169
#> [271,]  61  14      1          5        0   140
#> [272,]  61  15      1         10        0   130
#> [273,]  63   9      1          8        1   160
#> [274,]  63   2      1          0        0   140
#> [275,]  67   6      0        180        1   170
#> [276,]  68   5      1          4        1   150
#> [277,]  64   6      1          0        1   125
#> [278,]  66   7      1          0        1   115
#> [279,]  66   3      1          0        1   135
#> [280,]  66   6      1          0        1   140
#> [281,]  65   2      1          1        1   170
#> [282,]  64  10      1          9        1   110
#> [283,]  63   7      1          0        0   162
#> [284,]  63  10      0         16        1   160
#> [285,]  65  17      1         14        1   100
#> [286,]  65  18      1          3        0   120
#> [287,]  63   1      1          0        1   155
#> [288,]  63  10      0         18        1   130
#> [289,]  67  11      0         11        0   150
#> [290,]  65  15      1         12        1   150
#> [291,]  66  11      1          0        0   100
#> [292,]  69  12      0         15        1   140
#> [293,]  66  15      1         13        1   160
#> [294,]  65  11      1          6        0   130
#> [295,]  69   6      0        180        1   100
#> [296,]  66   9      1          8        0   130
#> [297,]  63   8      0        180        1   120
#> [298,]  68  14      1         13        1   140
#> [299,]  65   8      1          0        1    90
#> [300,]  65   1      1          0        0   133
#> [301,]  67   7      1          4        1   130
#> [302,]  65   6      0          6        0    80
#> [303,]  65  10      1          1        1   148
#> [304,]  66  19      1         12        1   150
#> [305,]  65   4      1          1        0   130
#> [306,]  64   4      0        179        0   160
#> [307,]  66   4      0        180        1   130
#> [308,]  64  11      0         11        0   125
#> [309,]  64   4      0        180        1   140
#> [310,]  64   0      1          0        1   118
#> [311,]  67   2      0         18        0   131
#> [312,]  66   4      0        180        0   177
#> [313,]  68   4      1          0        1   160
#> [314,]  69   4      1          3        1   150
#> [315,]  69  17      1         10        0   140
#> [316,]  65   1      0          1        1   120
#> [317,]  68  18      1          0        1   160
#> [318,]  68   4      0          4        1   190
#> [319,]  71   3      0          5        0   112
#> [320,]  70   7      1          0        1   190
#> [321,]  71  20      1          0        1   160
#> [322,]  67   2      0        180        0   128
#> [323,]  66   9      1          3        1   151
#> [324,]  70   4      1          0        1   180
#> [325,]  69   8      0        180        1   153
#> [326,]  70  14      0        171        0   166
#> [327,]  66   4      0        180        0   130
#> [328,]  67  10      1          9        0   200
#> [329,]  67   6      1          4        0   130
#> [330,]  68  18      1         14        1   170
#> [331,]  69   0      0          0        1   148
#> [332,]  65   2      0        180        0   130
#> [333,]  69   3      1          2        0   151
#> [334,]  65  14      1         13        1   150
#> [335,]  69   8      0        180        1   180
#> [336,]  71   7      0          7        0   230
#> [337,]  71   6      0         45        1   158
#> [338,]  69   5      0          5        1   142
#> [339,]  71   3      0        103        0   133
#> [340,]  69   3      0          3        1   130
#> [341,]  70  22      1         13        0   103
#> [342,]  67   5      0          5        0   130
#> [343,]  72   3      1          0        1   132
#> [344,]  72   7      0          7        1   110
#> [345,]  69   8      1          7        1   108
#> [346,]  67   3      0        180        0   110
#> [347,]  66   2      1          1        0   123
#> [348,]  69  19      0        180        0   130
#> [349,]  67  14      0        172        1   140
#> [350,]  69  11      1          0        1   120
#> [351,]  66   2      0        180        0   130
#> [352,]  68   2      0          7        1   130
#> [353,]  69   8      1          2        0   121
#> [354,]  67  13      1          9        0   130
#> [355,]  70   3      0        123        0   130
#> [356,]  72   5      1          4        0   170
#> [357,]  67  22      1          1        1   140
#> [358,]  67  12      1          8        0   120
#> [359,]  69   1      0          1        1   110
#> [360,]  67   4      0         60        1   136
#> [361,]  68  10      1          8        1   160
#> [362,]  66  24      1         13        0   130
#> [363,]  70  35      1          0        1   105
#> [364,]  72  30      1          0        1   145
#> [365,]  70   7      0          7        0   102
#> [366,]  68   7      1          2        0   135
#> [367,]  73  20      1          0        1   170
#> [368,]  69  10      1          6        1   120
#> [369,]  70  11      0        180        1   210
#> [370,]  72  19      1          8        0   120
#> [371,]  72  12      1         10        0   170
#> [372,]  67   9      0        180        0   158
#> [373,]  73  13      0        152        1   130
#> [374,]  70   5      0        180        0   150
#> [375,]  72   2      0          2        1   100
#> [376,]  72   6      1          5        0   115
#> [377,]  69   3      0        180        0   220
#> [378,]  68   4      1          3        0   210
#> [379,]  72   5      0         28        0   120
#> [380,]  69   8      1          1        0   164
#> [381,]  73   6      1          0        1   270
#> [382,]  72   8      1          1        1   150
#> [383,]  71   2      1          0        1   180
#> [384,]  70   3      0          3        1   159
#> [385,]  70  13      1          9        0   100
#> [386,]  72   6      0        180        1   130
#> [387,]  73   0      0        180        1   161
#> [388,]  74   8      1          0        1    85
#> [389,]  73   4      0        180        1   154
#> [390,]  69   2      1          0        1   110
#> [391,]  71   3      1          1        0   150
#> [392,]  71  15      1         11        0   165
#> [393,]  68   9      0        180        1   120
#> [394,]  70   5      1          0        1   190
#> [395,]  71   8      1          7        0   149
#> [396,]  71   3      1          2        1   190
#> [397,]  73  10      1          8        0   106
#> [398,]  70  26      1         11        1   120
#> [399,]  74   4      0          4        0   120
#> [400,]  73   4      0         58        1   160
#> [401,]  70   3      0        180        1   154
#> [402,]  72  15      1          0        1   150
#> [403,]  71   7      1          2        0   143
#> [404,]  72   8      1          0        1   140
#> [405,]  73  17      1         11        0   140
#> [406,]  71  13      1          8        0   121
#> [407,]  69   2      1          1        1    80
#> [408,]  71  14      1         13        1   170
#> [409,]  74   7      1          0        1   117
#> [410,]  72  10      1          8        1   153
#> [411,]  69   7      0        180        1   144
#> [412,]  72  15      1         13        0   156
#> [413,]  70   8      0          8        0   120
#> [414,]  75   2      1          1        0   145
#> [415,]  73  10      1          9        1   146
#> [416,]  72  10      1          9        1   160
#> [417,]  73  10      1         10        1   120
#> [418,]  71   2      0         10        1   112
#> [419,]  73   1      0          1        1    80
#> [420,]  75  13      1          1        1   130
#> [421,]  71   4      0          4        0   134
#> [422,]  72  15      1         12        1   120
#> [423,]  73  10      1          8        0   120
#> [424,]  70   7      1          4        0   184
#> [425,]  72   1      1          1        0   168
#> [426,]  72   7      0         57        1   145
#> [427,]  73  10      0        180        0   162
#> [428,]  70   3      0          3        0   150
#> [429,]  73   5      1          3        1   112
#> [430,]  71   3      1          0        0   144
#> [431,]  73   5      0        180        0   126
#> [432,]  76   3      1          0        1   120
#> [433,]  72   3      0        180        0   160
#> [434,]  76   5      0          5        1   130
#> [435,]  77  11      0         11        1   150
#> [436,]  75   3      1          1        0   180
#> [437,]  72   7      1          2        0   142
#> [438,]  73  15      0         15        1   160
#> [439,]  74   7      0        180        1   150
#> [440,]  74   3      0          3        1   128
#> [441,]  76   1      0        180        0   114
#> [442,]  74   2      1          1        0   140
#> [443,]  74  19      1          4        1   200
#> [444,]  73   6      0          6        1   114
#> [445,]  74   2      0        180        0   190
#> [446,]  72   4      0         85        1   120
#> [447,]  76  17      1          0        1   200
#> [448,]  73   4      1          3        1   125
#> [449,]  75   7      0          7        0   190
#> [450,]  75   0      0          0        1   130
#> [451,]  73  13      1         11        0   195
#> [452,]  75  12      0         12        1   160
#> [453,]  74   8      1          0        1   105
#> [454,]  75   4      1          2        1   188
#> [455,]  74   6      0        180        0   160
#> [456,]  76   4      0          4        1   155
#> [457,]  74   2      0        180        0   111
#> [458,]  73   1      0         52        1   105
#> [459,]  73   0      0        180        0   156
#> [460,]  72   5      0        180        0   120
#> [461,]  76   5      0        180        0   185
#> [462,]  76   5      1          0        1   167
#> [463,]  74   8      1          8        1   170
#> [464,]  75   9      0        180        1   140
#> [465,]  77   5      1          0        0   123
#> [466,]  73  10      1          9        0   146
#> [467,]  77  12      0        180        0   130
#> [468,]  77   1      1          0        1    90
#> [469,]  73   7      1          0        0   174
#> [470,]  75   3      1          1        1   171
#> [471,]  75   6      0        180        0   150
#> [472,]  79  10      1          8        0   190
#> [473,]  74   2      1          0        1   130
#> [474,]  78  18      0         18        1   144
#> [475,]  77   3      0        180        0   110
#> [476,]  76  29      0         47        0    90
#> [477,]  74  15      0        180        1   172
#> [478,]  78   8      1          6        1   110
#> [479,]  74   7      0          7        0   161
#> [480,]  76  13      1          1        1   170
#> [481,]  78  32      1          9        1   198
#> [482,]  79   6      0        180        0   170
#> [483,]  80  10      1          6        1   147
#> [484,]  78  13      1          5        0   130
#> [485,]  75  12      1          1        1   120
#> [486,]  78  15      0        180        1   270
#> [487,]  80   8      0          8        1   120
#> [488,]  75  13      1          6        0   150
#> [489,]  76   1      0          1        1    83
#> [490,]  79   4      0         80        0   145
#> [491,]  78  12      1          9        0   150
#> [492,]  78   2      1          1        0   130
#> [493,]  78  10      0        180        1   130
#> [494,]  75  11      1          4        0   162
#> [495,]  75   3      0          3        0     0
#> [496,]  76   7      0         29        1   150
#> [497,]  77  24      0         24        1   160
#> [498,]  80   9      0         23        1   128
#> [499,]  80   6      0          6        1   150
#> [500,]  78   6      1          0        1   240
#> [501,]  78  11      1          1        1   140
#> [502,]  79  11      0        180        0   160
#> [503,]  79   2      1          0        1   121
#> [504,]  78  14      1          0        1   140
#> [505,]  81   1      0          1        0   130
#> [506,]  79   4      0          4        1   125
#> [507,]  76  10      1          8        0   180
#> [508,]  77   6      0          6        1   107
#> [509,]  75   2      1          1        1   204
#> [510,]  76   1      0          1        1   140
#> [511,]  77  31      1          3        1   161
#> [512,]  76   1      0          1        1    90
#> [513,]  78   7      1          0        1   110
#> [514,]  79   3      0          3        0   120
#> [515,]  81   1      0        180        0   120
#> [516,]  77   9      1          4        0   141
#> [517,]  80  40      1          0        1   138
#> [518,]  78   4      0         59        1   112
#> [519,]  80  17      1         12        0   100
#> [520,]  76   7      0        161        0   151
#> [521,]  79  10      0         10        1   120
#> [522,]  80  15      1          0        1    90
#> [523,]  81   4      1          2        1   126
#> [524,]  80   9      0        118        1   186
#> [525,]  80   6      0        173        1   160
#> [526,]  78  32      0        180        1   130
#> [527,]  79   1      0         37        1   140
#> [528,]  81   3      0        180        0   184
#> [529,]  81   2      0        175        0   172
#> [530,]  78   7      0          7        1   147
#> [531,]  78  15      0         15        0   165
#> [532,]  79   3      0          3        1   101
#> [533,]  76   1      0        166        0   131
#> [534,]  78  20      1          0        1   109
#> [535,]  80   1      0          1        0   100
#> [536,]  78   3      1          1        1   152
#> [537,]  77  10      1          8        1   130
#> [538,]  77   5      0         85        0   188
#> [539,]  80   2      1          1        0   168
#> [540,]  80   6      1          0        1   119
#> [541,]  78   2      0        180        0   148
#> [542,]  80   5      0          5        1   130
#> [543,]  77   4      0        180        1    98
#> [544,]  81   1      0        108        0   129
#> [545,]  79   1      0        125        0   193
#> [546,]  84  22      1         10        0   180
#> [547,]  80   6      0          6        1   110
#> [548,]  82   5      0        180        0   110
#> [549,]  83   5      0        180        0   148
#> [550,]  79   7      1          6        0   130
#> [551,]  83   4      0        103        0    97
#> [552,]  81  11      1          8        0   160
#> [553,]  78  23      1         10        1   145
#> [554,]  79   4      0          4        1   183
#> [555,]  78   9      1          4        1   120
#> [556,]  81  15      0        180        1   140
#> [557,]  84   5      1          1        1    85
#> [558,]  81  20      1          9        0   170
#> [559,]  83   8      0          8        0   115
#> [560,]  80   6      1          0        1   150
#> [561,]  81   8      0        180        0   146
#> [562,]  79   7      0        177        0   197
#> [563,]  85   4      0        180        0    90
#> [564,]  81   2      1          1        0   198
#> [565,]  82   6      0        128        1   100
#> [566,]  82  23      1          0        0   110
#> [567,]  84   5      0        180        1   203
#> [568,]  84   4      0          4        1    85
#> [569,]  81   1      0          1        1   150
#> [570,]  84   1      0         38        1   205
#> [571,]  83   3      0        180        0   174
#> [572,]  80  13      1          8        1   140
#> [573,]  80   2      1          0        1   130
#> [574,]  79   4      0          4        1    60
#> [575,]  83   1      0          1        1   100
#> [576,]  82  19      0         19        0   120
#> [577,]  80  30      1         13        0   220
#> [578,]  79  14      1          0        0   110
#> [579,]  83   3      0        114        0    98
#> [580,]  81  14      1         12        1   128
#> [581,]  83   2      0        154        0   130
#> [582,]  82   0      0          2        1   100
#> [583,]  85   9      1          6        1   160
#> [584,]  83   1      0        180        0   160
#> [585,]  81   4      0          4        0   175
#> [586,]  84  15      1         13        1   110
#> [587,]  81   1      0          1        1   145
#> [588,]  82  16      1          8        0   103
#> [589,]  82   5      1          0        1   146
#> [590,]  83  12      1          2        1   170
#> [591,]  82  15      1          0        0   183
#> [592,]  83   7      0        126        0   135
#> [593,]  86   8      0          8        1   132
#> [594,]  84   6      0        165        0   145
#> [595,]  86   3      0          3        1   140
#> [596,]  82   9      0        180        1   134
#> [597,]  84   3      0        180        1   120
#> [598,]  85   3      0          3        1   118
#> [599,]  83   4      0          4        0   130
#> [600,]  86  12      1          0        1   132
#> [601,]  82  14      1         11        1   103
#> [602,]  86   6      1          0        1   140
#> [603,]  84  16      0         70        1   150
#> [604,]  83  19      0         43        0   150
#> [605,]  84   3      1          2        0   125
#> [606,]  83  10      1          0        1   190
#> [607,]  86   2      0        180        1   169
#> [608,]  88  14      1          3        1   130
#> [609,]  84   3      0          3        1   121
#> [610,]  83  13      1         12        0   170
#> [611,]  87   2      0        180        0   113
#> [612,]  84   9      0         92        1   110
#> [613,]  84   3      0        180        1   170
#> [614,]  86   4      0         38        1   122
#> [615,]  82   4      0          4        0   130
#> [616,]  86  13      0        177        0   163
#> [617,]  86   6      0          6        1   117
#> [618,]  84  13      0         62        1   100
#> [619,]  88   4      0          4        0   100
#> [620,]  83  20      1          3        1   150
#> [621,]  85  22      0         22        1   184
#> [622,]  83   9      0         65        1   150
#> [623,]  86   9      1          7        1   142
#> [624,]  87   2      0        180        1   130
#> [625,]  86   6      0         46        0   173
#> [626,]  88   3      0        115        0   110
#> [627,]  88   2      0        180        1    68
#> [628,]  89   5      0        119        1   140
#> [629,]  87   6      0        180        1   110
#> [630,]  84   8      0        180        1   119
#> [631,]  84   2      0        110        1   174
#> [632,]  84   0      0        180        1   136
#> [633,]  89  10      0         46        1   170
#> [634,]  88   1      0          1        0   135
#> [635,]  91   8      0          8        0   100
#> [636,]  87   2      0        180        0   160
#> [637,]  86   3      1          0        1    80
#> [638,]  87   6      0        126        1   168
#> [639,]  86  10      0        180        1   137
#> [640,]  86   9      1          7        0   130
#> [641,]  90   4      1          0        0   121
#> [642,]  87  43      0        178        1   130
#> [643,]  87   5      0         36        1   150
#> [644,]  88   3      1          2        0   159
#> [645,]  89   3      1          1        1   160
#> [646,]  92   1      0          1        1   167
#> [647,]  91   3      0         33        1   137
#> [648,]  88   5      0        158        0   100
#> [649,]  87   7      0         74        1   105
#> [650,]  89  12      1          0        1   130
#> [651,]  89   2      0        168        0   118
#> [652,]  89  52      0         52        1   130
#> [653,]  92   7      0          7        1   110
#> [654,]  89   4      0          4        1   159
#> [655,]  91   0      0          0        0     0
#> [656,]  89  14      0        180        1    84
#> [657,]  90  18      0        180        0   188
#> [658,]  90  19      1         11        1   129
#> [659,]  94   6      0         50        0    78
#> [660,]  90   1      0          1        1   118
#> [661,]  92   4      0         76        1   149
#> [662,]  91   1      0        180        0   158
#> [663,]  90   3      0         67        0   162
#> [664,]  96   3      0         12        1    97
#> [665,]  94   3      0         26        1   144
#> [666,]  91  12      0         53        1   212
#> [667,]  93   0      1          0        1   122
#> [668,]  92   5      0         69        0   139
#> [669,]  92   2      0          2        0   112
#> [670,]  93   4      0        180        1   135
#> 
#> $y
#>   [1] 180.0+   5.0+   2.0+   5.0+   5.0+ 180.0+   2.0+ 115.0  180.0+   5.0+
#>  [11] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+   2.0+ 180.0+ 180.0+
#>  [21] 180.0+   3.0  180.0+ 180.0+ 180.0+ 180.0+   2.0+ 155.0+ 180.0+ 180.0+
#>  [31] 180.0+   5.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 150.0  180.0+ 180.0+
#>  [41] 180.0+ 180.0+   5.0+ 161.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+   5.0+
#>  [51] 180.0+ 180.0+ 180.0+ 177.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#>  [61] 172.0+ 180.0+ 180.0+ 180.0+ 180.0+   7.0  180.0+ 180.0+ 180.0+   2.0 
#>  [71]   1.0  179.0+ 179.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#>  [81]   7.0   88.0+ 180.0+   4.0+ 180.0+ 180.0+ 180.0+  77.0  180.0+ 180.0+
#>  [91]   5.0  180.0+ 180.0+ 180.0+   4.0+  85.0  166.0+  99.0  180.0+  16.0+
#> [101] 180.0+ 152.0+   6.0+ 180.0+ 180.0+ 171.0+ 180.0+ 174.0+   6.0+   1.0 
#> [111]   9.0+ 180.0+ 180.0+ 180.0+ 175.0+ 180.0+   2.0  180.0+ 180.0+ 180.0+
#> [121] 180.0+ 180.0+  16.0+ 180.0+  15.0+ 180.0+ 180.0+ 180.0+  12.0+ 134.0+
#> [131] 180.0+   2.0    3.0+ 180.0+ 180.0+ 165.0  180.0+ 180.0+ 180.0+ 180.0+
#> [141] 180.0+   8.0+ 180.0+ 180.0+   0.5  180.0+  15.0  166.0+   5.0+   4.0+
#> [151] 147.0+ 180.0+ 180.0+ 180.0+   4.0+ 180.0+   9.0+   1.0  180.0+ 180.0+
#> [161] 180.0+ 180.0+ 180.0+   2.0  180.0+ 180.0+ 180.0+  64.0  180.0+ 180.0+
#> [171] 180.0+ 180.0+ 161.0+ 171.0+ 180.0+ 180.0+   3.0  180.0+ 180.0+ 180.0+
#> [181]  17.0    3.0+  19.0  180.0+ 180.0+ 172.0+   8.0  180.0+ 180.0+   1.0+
#> [191]  15.0  180.0+ 180.0+ 180.0+  77.0   13.0+ 180.0+ 180.0+ 180.0+  94.0 
#> [201] 180.0+ 169.0    7.0    7.0+   6.0  180.0+ 180.0+   3.0+ 180.0+ 180.0+
#> [211]  28.0   13.0+   5.0    5.0+ 180.0+ 180.0+   1.0  180.0+ 180.0+ 180.0+
#> [221] 180.0+ 180.0+ 180.0+ 180.0+   4.0+ 180.0+ 180.0+   9.0  180.0+  84.0 
#> [231]   7.0+ 180.0+ 180.0+   1.0  180.0+ 180.0+   4.0+ 167.0    6.0+ 180.0+
#> [241] 180.0+  12.0  180.0+ 180.0+ 180.0+  36.0  180.0+   3.0+  88.0  180.0+
#> [251]  12.0  180.0+ 180.0+ 180.0+ 180.0+   0.5  180.0+  12.0+ 180.0+ 180.0+
#> [261] 180.0+ 180.0+   3.0  180.0+ 180.0+ 180.0+  11.0+   2.0+  18.0+ 180.0+
#> [271] 180.0+ 180.0+ 180.0+   2.0+ 180.0+   5.0+ 180.0+ 179.0+   3.0+ 180.0+
#> [281] 175.0+ 180.0+   7.0+  16.0  180.0+ 123.0+   1.0+  18.0   11.0+  15.0+
#> [291] 180.0+  15.0  180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+   8.0+ 180.0+
#> [301] 180.0+   6.0  180.0+  19.0+ 180.0+ 179.0+ 180.0+  11.0+ 180.0+   0.5 
#> [311]  18.0  180.0+ 180.0+ 152.0+ 180.0+   1.0   18.0+   4.0    5.0    7.0+
#> [321] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 171.0  180.0+ 174.0+   6.0  180.0+
#> [331]   0.5  180.0+ 180.0+  14.0+ 180.0+   7.0+  45.0    5.0+ 103.0    3.0+
#> [341] 180.0+   5.0+ 180.0+   7.0    8.0+ 180.0+   2.0+ 180.0+ 172.0+ 180.0+
#> [351] 180.0+   7.0    8.0+  13.0+ 123.0  180.0+  51.0  180.0+   1.0   60.0 
#> [361]  10.0+ 180.0+ 180.0+ 162.0    7.0+   7.0+ 124.0  180.0+ 180.0+ 180.0+
#> [371]  12.0  180.0+ 152.0  180.0+   2.0  180.0+ 180.0+ 180.0+  28.0  180.0+
#> [381]   6.0  180.0+ 180.0+   3.0+  13.0+ 180.0+ 180.0+ 180.0+ 180.0+   2.0 
#> [391]   3.0+ 180.0+ 180.0+ 180.0+   8.0    3.0   87.0  180.0+   4.0+  58.0 
#> [401] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 175.0    2.0   14.0+ 180.0+  10.0+
#> [411] 180.0+ 180.0+   8.0+ 180.0+ 180.0+ 159.0   15.0   10.0    1.0   13.0 
#> [421]   4.0+ 180.0+  10.0  104.0+   1.0   57.0  180.0+   3.0+   5.0  180.0+
#> [431] 180.0+ 180.0+ 180.0+   5.0   11.0+ 180.0+   7.0   15.0+ 180.0+   3.0 
#> [441] 180.0+ 180.0+ 180.0+   6.0  180.0+  85.0   17.0+ 180.0+   7.0    0.5 
#> [451] 180.0+  12.0  180.0+  46.0  180.0+   4.0  180.0+  52.0  180.0+ 180.0+
#> [461] 180.0+ 180.0+   8.0  180.0+   5.0  180.0+ 180.0+   1.0    7.0+   3.0 
#> [471] 180.0+ 180.0+ 176.0+  18.0  180.0+  47.0  180.0+   8.0+   7.0  180.0+
#> [481]  32.0  180.0+  10.0  172.0   12.0  180.0+   8.0  180.0+   1.0   80.0 
#> [491] 180.0+ 180.0+ 180.0+ 152.0+   3.0   29.0   24.0   23.0    6.0  180.0+
#> [501] 180.0+ 180.0+ 180.0+ 180.0+   1.0    4.0   10.0+   6.0    2.0+   1.0 
#> [511] 171.0    1.0   43.0    3.0  180.0+  71.0   40.0   59.0   17.0  161.0 
#> [521]  10.0+ 180.0+  93.0  118.0  173.0  180.0+  37.0  180.0+ 175.0+   7.0+
#> [531]  15.0+   3.0  166.0+  20.0+   1.0    3.0+  10.0   85.0   10.0    6.0 
#> [541] 180.0+   5.0  180.0+ 108.0  125.0  180.0+   6.0  180.0+ 180.0+ 180.0+
#> [551] 103.0  180.0+  70.0    4.0  180.0+ 180.0+ 180.0+  20.0    8.0+ 180.0+
#> [561] 180.0+ 177.0+ 180.0+ 180.0+ 128.0   62.0  180.0+   4.0    1.0   38.0 
#> [571] 180.0+ 180.0+ 180.0+   4.0    1.0   19.0   30.0  180.0+ 114.0  180.0+
#> [581] 154.0    2.0  180.0+ 180.0+   4.0+ 180.0+   1.0   16.0+   5.0+  77.0 
#> [591]  83.0  126.0    8.0  165.0    3.0  180.0+ 180.0+   3.0+   4.0+ 180.0+
#> [601] 174.0    6.0   70.0   43.0  180.0+ 180.0+ 180.0+  14.0    3.0   13.0 
#> [611] 180.0+  92.0  180.0+  38.0    4.0  177.0    6.0+  62.0    4.0+  20.0 
#> [621]  22.0   65.0   11.0  180.0+  46.0  115.0  180.0+ 119.0  180.0+ 180.0+
#> [631] 110.0  180.0+  46.0    1.0+   8.0  180.0+   3.0  126.0  180.0+ 180.0+
#> [641]   4.0  178.0+  36.0   75.0    3.0+   1.0   33.0  158.0   74.0  180.0+
#> [651] 168.0   52.0    7.0    4.0    0.5  180.0+ 180.0+ 180.0+  50.0    1.0+
#> [661]  76.0  180.0+  67.0   12.0   26.0   53.0    0.5   69.0    2.0  180.0+
#> 
#> $weights
#> NULL
#> 
#> $offset
#> NULL
#> 


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
#> Warning: Multiple lambdas have been fit. Lambda will be set to 0.01 (see parameter 's').

# Score the predictions
predictions$score()
#> surv.cindex 
#>   0.8297959