Skip to contents

Generalized linear models with elastic net regularization. Calls glmnet::glmnet() from package glmnet.

Initial parameter values

  • family is set to "cox" and cannot be changed.

Prediction types

This learner returns three prediction types:

  1. lp: a vector containing the linear predictors (relative risk scores), where each score corresponds to a specific test observation. Calculated using glmnet::predict.coxnet().

  2. crank: same as lp.

  3. distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated using glmnet::survfit.coxnet(). Parameters stype and ctype relate to how lp predictions are transformed into survival predictions and are described in survival::survfit.coxph(). By default the Breslow estimator is used for computing the baseline hazard.

Caution: This learner is different to learners calling glmnet::cv.glmnet() in that it does not use the internal optimization of parameter lambda. Instead, lambda needs to be tuned by the user (e.g., via mlr3tuning). When lambda is tuned, the glmnet will be trained for each tuning iteration. While fitting the whole path of lambdas would be more efficient, as is done by default in glmnet::glmnet(), tuning/selecting the parameter at prediction time (using parameter s) is currently not supported in mlr3 (at least not in efficient manner). Tuning the s parameter is, therefore, currently discouraged.

When the data are i.i.d. and efficiency is key, we recommend using the respective auto-tuning counterpart in mlr_learners_surv.cv_glmnet(). However, in some situations this is not applicable, usually when data are imbalanced or not i.i.d. (longitudinal, time-series) and tuning requires custom resampling strategies (blocked design, stratification).

Offset

If a Task contains a column with the offset role, it is automatically incorporated during training via the offset argument in glmnet::glmnet(). During prediction, the offset column from the test set is used only if use_pred_offset = TRUE (default), passed via the newoffset argument in glmnet::predict.coxnet(). Otherwise, if the user sets use_pred_offset = FALSE, a zero offset is applied, effectively disabling the offset adjustment during prediction.

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.glmnet")

Meta Information

  • Task type: “surv”

  • Predict Types: “crank”, “distr”, “lp”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, mlr3proba, mlr3extralearners, glmnet

Parameters

IdTypeDefaultLevelsRange
alignmentcharacterlambdalambda, fraction-
alphanumeric1\([0, 1]\)
bignumeric9.9e+35\((-\infty, \infty)\)
devmaxnumeric0.999\([0, 1]\)
dfmaxinteger-\([0, \infty)\)
epsnumeric1e-06\([0, 1]\)
epsnrnumeric1e-08\([0, 1]\)
exactlogicalFALSETRUE, FALSE-
excludeuntyped--
exmxnumeric250\((-\infty, \infty)\)
fdevnumeric1e-05\([0, 1]\)
gammauntyped--
groupedlogicalTRUETRUE, FALSE-
interceptlogicalTRUETRUE, FALSE-
keeplogicalFALSETRUE, FALSE-
lambdauntyped--
lambda.min.rationumeric-\([0, 1]\)
lower.limitsuntyped-Inf-
maxitinteger100000\([1, \infty)\)
mnlaminteger5\([1, \infty)\)
mxitinteger100\([1, \infty)\)
mxitnrinteger25\([1, \infty)\)
nlambdainteger100\([1, \infty)\)
use_pred_offsetlogicalTRUETRUE, FALSE-
parallellogicalFALSETRUE, FALSE-
penalty.factoruntyped--
pmaxinteger-\([0, \infty)\)
pminnumeric1e-09\([0, 1]\)
precnumeric1e-10\((-\infty, \infty)\)
predict.gammanumericgamma.1se\((-\infty, \infty)\)
relaxlogicalFALSETRUE, FALSE-
snumeric0.01\([0, \infty)\)
standardizelogicalTRUETRUE, FALSE-
threshnumeric1e-07\([0, \infty)\)
trace.itinteger0\([0, 1]\)
type.logisticcharacterNewtonNewton, modified.Newton-
type.multinomialcharacterungroupedungrouped, grouped-
upper.limitsuntypedInf-
stypeinteger2\([1, 2]\)
ctypeinteger-\([1, 2]\)

References

Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1–22. doi:10.18637/jss.v033.i01 .

See also

Author

be-marc

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvGlmnet

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method selected_features()

Returns the set of selected features as reported by glmnet::predict.glmnet() with type set to "nonzero".

Usage

LearnerSurvGlmnet$selected_features(lambda = NULL)

Arguments

lambda

(numeric(1))
Custom lambda, defaults to the active lambda depending on parameter set.

Returns

(character()) of feature names.


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerSurvGlmnet$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = lrn("surv.glmnet")
print(learner)
#> 
#> ── <LearnerSurvGlmnet> (surv.glmnet): Regularized Generalized Linear Model ─────
#> • Model: -
#> • Parameters: use_pred_offset=TRUE
#> • Packages: mlr3, mlr3proba, mlr3extralearners, and glmnet
#> • Predict Types: [crank], distr, and lp
#> • Feature Types: logical, integer, and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: offset, selected_features, and weights
#> • Other settings: use_weights = 'use'

# Define a Task
task = tsk("grace")

# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> $model
#> 
#> Call:  (if (cv) glmnet::cv.glmnet else glmnet::glmnet)(x = data, y = target,      family = "cox") 
#> 
#>    Df  %Dev   Lambda
#> 1   0  0.00 0.186700
#> 2   1  0.66 0.170100
#> 3   2  1.52 0.155000
#> 4   2  2.46 0.141200
#> 5   2  3.27 0.128700
#> 6   3  6.46 0.117300
#> 7   3  8.90 0.106900
#> 8   3 10.75 0.097360
#> 9   3 12.21 0.088710
#> 10  3 13.38 0.080830
#> 11  3 14.35 0.073650
#> 12  5 15.20 0.067110
#> 13  5 15.97 0.061140
#> 14  5 16.62 0.055710
#> 15  5 17.17 0.050760
#> 16  5 17.64 0.046250
#> 17  5 18.03 0.042140
#> 18  6 18.37 0.038400
#> 19  6 18.67 0.034990
#> 20  6 18.92 0.031880
#> 21  6 19.13 0.029050
#> 22  6 19.31 0.026470
#> 23  6 19.46 0.024120
#> 24  6 19.59 0.021970
#> 25  6 19.70 0.020020
#> 26  6 19.79 0.018240
#> 27  6 19.87 0.016620
#> 28  6 19.94 0.015150
#> 29  6 19.99 0.013800
#> 30  6 20.04 0.012570
#> 31  6 20.08 0.011460
#> 32  6 20.11 0.010440
#> 33  6 20.14 0.009512
#> 34  6 20.16 0.008667
#> 35  6 20.18 0.007897
#> 36  6 20.20 0.007195
#> 37  6 20.21 0.006556
#> 38  6 20.22 0.005974
#> 39  6 20.23 0.005443
#> 40  6 20.24 0.004960
#> 41  6 20.24 0.004519
#> 42  6 20.25 0.004118
#> 43  6 20.26 0.003752
#> 44  6 20.26 0.003418
#> 45  6 20.26 0.003115
#> 
#> $x
#>        age los revasc revascdays stchange sysbp
#>   [1,]  28   9      0        180        1   107
#>   [2,]  32   5      1          0        1   121
#>   [3,]  33   2      0          2        0   150
#>   [4,]  35   5      1          2        0   172
#>   [5,]  35   2      0        180        0   121
#>   [6,]  35   2      1          1        1   112
#>   [7,]  37   9      0        180        1   151
#>   [8,]  38   2      0        115        0   150
#>   [9,]  36   5      1          0        1   115
#>  [10,]  33   6      1          1        1   115
#>  [11,]  38  12      1         11        1    92
#>  [12,]  40  12      1          9        0   153
#>  [13,]  37   1      1          0        1   146
#>  [14,]  40   2      1          1        1   148
#>  [15,]  42   2      0          2        0   140
#>  [16,]  40   6      0        180        1   138
#>  [17,]  40  11      1         10        1   120
#>  [18,]  42   2      0        180        0   100
#>  [19,]  43   3      1          0        1   100
#>  [20,]  43   4      1          0        1   130
#>  [21,]  42  15      1         13        1   125
#>  [22,]  40   3      1          1        0   170
#>  [23,]  42   2      0        180        1   124
#>  [24,]  44   5      1          1        0   170
#>  [25,]  41  10      1          8        0   150
#>  [26,]  41  13      1          1        0   140
#>  [27,]  45   9      1          7        0   110
#>  [28,]  45   6      0        180        1   170
#>  [29,]  41   5      1          4        1   141
#>  [30,]  44   2      1          1        1   150
#>  [31,]  43   2      0        180        1   140
#>  [32,]  45   2      0        180        1   140
#>  [33,]  47   4      1          3        0   118
#>  [34,]  48  15      0        180        1   160
#>  [35,]  45   3      0        150        0   130
#>  [36,]  44   3      1          0        1   180
#>  [37,]  43  29      0        180        1   180
#>  [38,]  45   4      1          0        0   124
#>  [39,]  43  10      0        180        0   185
#>  [40,]  47   6      1          0        1   116
#>  [41,]  46  13      1         10        0   100
#>  [42,]  47   4      1          3        1   160
#>  [43,]  45   5      0          5        0   141
#>  [44,]  46   2      1          1        1   122
#>  [45,]  46   6      1          0        1   100
#>  [46,]  47   2      0        180        0   108
#>  [47,]  44   9      1          8        1   135
#>  [48,]  45   5      0        180        1   190
#>  [49,]  46   5      1          3        0   130
#>  [50,]  46   4      0        180        1   121
#>  [51,]  44   2      0        180        0   142
#>  [52,]  46  15      0        180        1   120
#>  [53,]  45   9      1          0        1   145
#>  [54,]  47   3      1          1        1   120
#>  [55,]  48  12      1         11        0   200
#>  [56,]  47   5      1          3        1   130
#>  [57,]  47   9      1          6        0   170
#>  [58,]  46   3      1          0        1   119
#>  [59,]  49   4      0        180        0   117
#>  [60,]  47  10      0         10        1   140
#>  [61,]  50   1      1          0        1   129
#>  [62,]  48   2      1          0        0   184
#>  [63,]  50   4      1          1        0   125
#>  [64,]  50   6      1          2        1   140
#>  [65,]  46   9      1          9        1   122
#>  [66,]  50   7      0        180        1   110
#>  [67,]  51   1      0          1        1   145
#>  [68,]  47   2      0        180        0   150
#>  [69,]  46   6      1          0        1   156
#>  [70,]  50   4      0          4        1   100
#>  [71,]  51   3      1          2        0   113
#>  [72,]  50   9      0        180        0   130
#>  [73,]  49   7      1          4        1    90
#>  [74,]  47   6      0        180        1   162
#>  [75,]  52   2      0        180        0   155
#>  [76,]  46   1      1          1        0   145
#>  [77,]  50   4      1          1        0   150
#>  [78,]  48   7      1          0        1   110
#>  [79,]  48  17      1         10        0   111
#>  [80,]  52   4      1          4        0   152
#>  [81,]  49   9      1          3        0   102
#>  [82,]  49  15      0        180        1   160
#>  [83,]  53   5      0        180        1   140
#>  [84,]  54  17      1         12        1   102
#>  [85,]  53   5      0         77        0   159
#>  [86,]  53   7      1          0        0   199
#>  [87,]  51   3      1          1        0   140
#>  [88,]  50  10      1          6        0   122
#>  [89,]  50  14      1         13        0   170
#>  [90,]  51  25      1          1        0   202
#>  [91,]  49   5      1          2        1   150
#>  [92,]  52  14      1          7        1   200
#>  [93,]  48   6      0        180        0   160
#>  [94,]  48  11      1         10        0   120
#>  [95,]  53   4      1          0        1   156
#>  [96,]  51  13      0         99        1   160
#>  [97,]  54   9      1          0        1   138
#>  [98,]  49  16      0         16        0   125
#>  [99,]  55   3      1          1        0   150
#> [100,]  54  23      1         10        0   131
#> [101,]  52   7      1          2        0   154
#> [102,]  54   9      1          1        0   130
#> [103,]  55   4      1          2        0   150
#> [104,]  52   4      0        180        1   180
#> [105,]  51  13      1         11        0   145
#> [106,]  50   5      1          4        1   150
#> [107,]  54   4      1          0        1   121
#> [108,]  52   4      0        180        0   183
#> [109,]  50   3      0        174        1   153
#> [110,]  55  28      1         13        1   160
#> [111,]  49   6      1          0        1   130
#> [112,]  56   4      1          1        1   130
#> [113,]  52   5      0        175        1   117
#> [114,]  54   1      0        180        0   162
#> [115,]  56   3      0        180        1   193
#> [116,]  56   2      0        180        0   132
#> [117,]  55   5      1          4        1   120
#> [118,]  52   8      0        180        0   119
#> [119,]  53  18      1          9        1   150
#> [120,]  55   6      0        180        0   170
#> [121,]  52  16      0         16        0   152
#> [122,]  53  15      0         15        1    90
#> [123,]  53   4      0        180        1   150
#> [124,]  55   6      0        180        1   100
#> [125,]  54  12      1          0        1   190
#> [126,]  55   2      0        134        1   140
#> [127,]  54   3      0        180        0   128
#> [128,]  56   3      0          8        1   139
#> [129,]  54   7      1          2        0   129
#> [130,]  54   2      1          1        0   135
#> [131,]  52   9      1          3        0   170
#> [132,]  57   5      1          3        1   138
#> [133,]  57   1      0          1        1   100
#> [134,]  56   4      1          0        1   140
#> [135,]  52   2      0        180        0   140
#> [136,]  52  15      1         14        0   130
#> [137,]  56  14      1         11        0   130
#> [138,]  57  10      0        180        1   170
#> [139,]  58   8      0          8        1   130
#> [140,]  54   5      0        180        1   108
#> [141,]  55   3      1          1        1   156
#> [142,]  57   0      0          0        1   150
#> [143,]  53  21      1         13        1   130
#> [144,]  57   4      0        180        1   119
#> [145,]  53  15      1         10        1   130
#> [146,]  54  17      1          8        1   227
#> [147,]  55   9      1          2        1   147
#> [148,]  57   4      1          2        1   185
#> [149,]  53   4      0        147        1   145
#> [150,]  57  11      1         10        1   129
#> [151,]  55   3      1          2        0   140
#> [152,]  55   5      0          5        1   131
#> [153,]  54   7      1          0        1   141
#> [154,]  56   4      0          4        0   164
#> [155,]  58   9      1          0        1   180
#> [156,]  58   1      1          1        1   200
#> [157,]  56   7      1          5        1   120
#> [158,]  60  11      1          9        0   106
#> [159,]  59   3      0        180        0   120
#> [160,]  60   5      1          1        0   138
#> [161,]  57   5      0        180        1   130
#> [162,]  58  11      1          9        1   124
#> [163,]  55   5      1          0        1   160
#> [164,]  57  10      1          9        0   103
#> [165,]  59   6      1          0        1   140
#> [166,]  59   5      0        180        1   155
#> [167,]  59   4      1          0        1   152
#> [168,]  61   9      0          9        1   160
#> [169,]  60   0      1          0        1    80
#> [170,]  59   2      1          1        0   140
#> [171,]  58   8      0        161        1   140
#> [172,]  61   9      1          8        0   150
#> [173,]  58   1      0          1        1   100
#> [174,]  57  13      1         10        0   110
#> [175,]  61   3      0         17        0   143
#> [176,]  59   9      1          0        1    80
#> [177,]  55   4      1          3        1   160
#> [178,]  58  11      0        172        1   135
#> [179,]  56   8      1          8        0   120
#> [180,]  57   1      0          1        0   126
#> [181,]  59   5      1          2        0   182
#> [182,]  61   8      0         77        0   120
#> [183,]  61  13      0         13        0   210
#> [184,]  58   8      1          5        0   152
#> [185,]  62  10      1          0        1   153
#> [186,]  62   7      1          2        1   180
#> [187,]  57   3      1          0        0   100
#> [188,]  61  18      0        170        0   140
#> [189,]  57   7      0        169        0   180
#> [190,]  61   7      0          7        1   150
#> [191,]  60   7      0          7        0   147
#> [192,]  61   6      0          6        0   134
#> [193,]  59  13      1          2        0   198
#> [194,]  57  12      1          9        1   120
#> [195,]  62   4      1          0        0   160
#> [196,]  60  17      1          8        1   140
#> [197,]  58   3      1          0        1   146
#> [198,]  62   4      1          3        0   173
#> [199,]  58   2      0         30        0   202
#> [200,]  59   1      0        180        0   155
#> [201,]  59  16      1          9        1   133
#> [202,]  61  13      0         13        0   120
#> [203,]  58  11      1          9        0   179
#> [204,]  57   2      1          1        0   159
#> [205,]  58   7      0        180        1   150
#> [206,]  63   3      1          1        0   180
#> [207,]  63   1      0        180        1   130
#> [208,]  61   7      0        180        0   135
#> [209,]  62   3      0        180        1   105
#> [210,]  63  15      1         10        1   126
#> [211,]  64   4      0        180        0   130
#> [212,]  60  18      1         13        0   132
#> [213,]  59   8      0        180        1   140
#> [214,]  58   9      1          9        0   110
#> [215,]  62   7      0          7        0   150
#> [216,]  58   2      0        180        0   127
#> [217,]  59   4      0        180        0   196
#> [218,]  60   7      1          5        1   141
#> [219,]  59   5      1          1        0   148
#> [220,]  63   1      0          1        0   162
#> [221,]  63   1      0          1        0   130
#> [222,]  61  15      1         13        0   170
#> [223,]  59   4      0          4        0   149
#> [224,]  60   3      0          3        0   168
#> [225,]  64  10      1          9        0   160
#> [226,]  59  10      0        180        1   130
#> [227,]  60   8      0         17        1   130
#> [228,]  61   6      1          1        1   117
#> [229,]  64  12      1         11        0   160
#> [230,]  66   1      1          0        1   120
#> [231,]  64   6      1          0        1   140
#> [232,]  63  10      1          0        1   148
#> [233,]  63  14      1          9        0   123
#> [234,]  63   4      1          3        0   162
#> [235,]  66   3      1          1        0   127
#> [236,]  61  10      1          2        1   194
#> [237,]  64  32      1          9        1   160
#> [238,]  63  12      1          9        0   114
#> [239,]  63   7      0        180        0   120
#> [240,]  65   8      1          0        0   168
#> [241,]  65  10      1          8        1   120
#> [242,]  64   0      0          0        1    90
#> [243,]  60   6      0        180        0   130
#> [244,]  64  21      1         10        0   190
#> [245,]  64   9      0        180        0   150
#> [246,]  61   4      0        180        1   113
#> [247,]  65   3      0        180        1   190
#> [248,]  63  16      1          7        1   110
#> [249,]  64   7      0        180        1   120
#> [250,]  66   6      1          1        1   130
#> [251,]  63  12      0         12        1   150
#> [252,]  62   3      1          1        1   199
#> [253,]  65   6      0          9        0   112
#> [254,]  65   3      1          0        1    80
#> [255,]  63   5      1          4        0   170
#> [256,]  63   2      1          1        0   180
#> [257,]  62  13      1         11        0   180
#> [258,]  64   2      0          2        0   201
#> [259,]  66  18      1          5        0   142
#> [260,]  62   9      0        180        0   145
#> [261,]  61  15      1         10        0   130
#> [262,]  63   9      1          8        1   160
#> [263,]  63   2      1          0        0   140
#> [264,]  64  19      1          8        1   160
#> [265,]  65   8      1          0        1   140
#> [266,]  67   6      0        180        1   170
#> [267,]  68   5      1          4        1   150
#> [268,]  64  13      1         12        1   150
#> [269,]  64   6      1          0        1   125
#> [270,]  66  13      1          0        0   118
#> [271,]  64   0      0          0        1   148
#> [272,]  66   3      1          0        1   135
#> [273,]  66   6      1          0        1   140
#> [274,]  65   2      1          1        1   170
#> [275,]  64  10      1          9        1   110
#> [276,]  63   7      1          0        0   162
#> [277,]  68   5      0          5        1    90
#> [278,]  66  14      0        180        0   130
#> [279,]  65  17      1         14        1   100
#> [280,]  63   8      1          1        1   162
#> [281,]  63   1      1          0        1   155
#> [282,]  63  10      0         18        1   130
#> [283,]  67  11      0         11        0   150
#> [284,]  68  14      0         79        0   172
#> [285,]  66  12      1         10        1   150
#> [286,]  66  11      1          0        0   100
#> [287,]  65   4      1          2        1   145
#> [288,]  69  12      0         15        1   140
#> [289,]  66  15      1         13        1   160
#> [290,]  63   2      0        180        0   150
#> [291,]  65  11      1          6        0   130
#> [292,]  69  21      1         10        0   180
#> [293,]  66   9      1          8        0   130
#> [294,]  68  14      1         13        1   140
#> [295,]  65   8      1          0        1    90
#> [296,]  66   3      0          3        1   138
#> [297,]  69   1      1          0        0   170
#> [298,]  67   1      0        180        1   160
#> [299,]  68  10      1         10        1   150
#> [300,]  67   7      1          4        1   130
#> [301,]  63   2      1          0        0    99
#> [302,]  65   6      0          6        0    80
#> [303,]  65  10      1          1        1   148
#> [304,]  66  19      1         12        1   150
#> [305,]  66   4      0        180        1   130
#> [306,]  70  15      1         12        1   132
#> [307,]  64  11      0         11        0   125
#> [308,]  64   4      0        180        1   140
#> [309,]  64   0      1          0        1   118
#> [310,]  67   2      0         18        0   131
#> [311,]  66   7      1          5        1   131
#> [312,]  66   4      0        180        0   177
#> [313,]  68   4      1          0        1   160
#> [314,]  65  13      1         12        1   130
#> [315,]  69   8      0         93        0   140
#> [316,]  64  21      0         21        1   155
#> [317,]  66   6      0        180        0   140
#> [318,]  65   1      0          1        1   120
#> [319,]  65   6      0        101        1   115
#> [320,]  68   4      0          4        1   190
#> [321,]  67   2      0        180        0   128
#> [322,]  66   9      1          3        1   151
#> [323,]  69   8      0        180        1   153
#> [324,]  70  14      0        171        0   166
#> [325,]  66   4      0        180        0   130
#> [326,]  67  10      1          9        0   200
#> [327,]  68  18      1         14        1   170
#> [328,]  69   0      0          0        1   148
#> [329,]  65   2      0        180        0   130
#> [330,]  68   7      1          0        1   150
#> [331,]  69   3      1          2        0   151
#> [332,]  67  14      1         13        0   130
#> [333,]  66   2      0          2        1   228
#> [334,]  71   3      0        103        0   133
#> [335,]  69   3      0          3        1   130
#> [336,]  67   1      0         36        1   104
#> [337,]  68   6      0        180        0   145
#> [338,]  69   6      1          4        1   174
#> [339,]  72   3      1          0        1   132
#> [340,]  72   7      0          7        1   110
#> [341,]  69   8      1          7        1   108
#> [342,]  67   3      0        180        0   110
#> [343,]  66   2      1          1        0   123
#> [344,]  69  19      0        180        0   130
#> [345,]  68  18      0         18        1   100
#> [346,]  67  14      0        172        1   140
#> [347,]  67   7      1          4        0   122
#> [348,]  69   4      1          3        0   132
#> [349,]  69   8      1          2        0   121
#> [350,]  70   9      0        180        1   142
#> [351,]  72   5      1          4        0   170
#> [352,]  68   3      0         19        0   135
#> [353,]  69   1      0          1        1   110
#> [354,]  67   4      0         60        1   136
#> [355,]  69   5      0         76        0   120
#> [356,]  72  13      1         11        1   195
#> [357,]  68  10      1          8        1   160
#> [358,]  66  24      1         13        0   130
#> [359,]  70  35      1          0        1   105
#> [360,]  70   7      0          7        0   102
#> [361,]  68   7      1          2        0   135
#> [362,]  71   6      0          9        0   120
#> [363,]  69  10      1          6        1   120
#> [364,]  70  11      0        180        1   210
#> [365,]  72  19      1          8        0   120
#> [366,]  72  12      1         10        0   170
#> [367,]  67   9      0        180        0   158
#> [368,]  73  13      0        152        1   130
#> [369,]  70   5      0        180        0   150
#> [370,]  72   6      1          5        0   115
#> [371,]  68  23      0        180        1   220
#> [372,]  69   3      0        180        0   220
#> [373,]  68   4      1          3        0   210
#> [374,]  72   5      0         28        0   120
#> [375,]  71   5      0        180        0   191
#> [376,]  69  16      1         10        1   140
#> [377,]  69   8      1          1        0   164
#> [378,]  68   7      0        180        1   130
#> [379,]  72  16      1          1        1   130
#> [380,]  70   4      0        180        0   180
#> [381,]  72   8      1          1        1   150
#> [382,]  71   2      1          0        1   180
#> [383,]  73   7      0          7        1   140
#> [384,]  68  15      1         13        1   130
#> [385,]  70   3      0          3        1   159
#> [386,]  72   6      0        180        1   130
#> [387,]  74   8      1          0        1    85
#> [388,]  73   4      0        180        1   154
#> [389,]  69   2      1          0        1   110
#> [390,]  71   3      1          1        0   150
#> [391,]  71  15      1         11        0   165
#> [392,]  74  20      0         20        1   180
#> [393,]  68   9      0        180        1   120
#> [394,]  74   0      1          0        1    90
#> [395,]  70   5      1          0        1   190
#> [396,]  73  10      1          8        0   106
#> [397,]  69  12      1          1        1   149
#> [398,]  70  26      1         11        1   120
#> [399,]  74   4      0          4        0   120
#> [400,]  70   3      0        180        1   154
#> [401,]  73   6      0        180        0   110
#> [402,]  72  15      1          0        1   150
#> [403,]  71   7      1          2        0   143
#> [404,]  74   3      0          3        1   150
#> [405,]  73  17      1         11        0   140
#> [406,]  71  13      1          8        0   121
#> [407,]  71  14      1         13        1   170
#> [408,]  74   7      1          0        1   117
#> [409,]  72  10      1          8        1   153
#> [410,]  71  10      1          9        1   120
#> [411,]  75   1      0          1        0   133
#> [412,]  75   2      1          1        0   145
#> [413,]  73  10      1          9        1   146
#> [414,]  73  10      1         10        1   120
#> [415,]  74  15      1          9        1   179
#> [416,]  73   1      0          1        1    80
#> [417,]  75   9      1          7        0   140
#> [418,]  71   4      0          4        0   134
#> [419,]  72  15      1         12        1   120
#> [420,]  73  10      1          8        0   120
#> [421,]  72   1      1          1        0   168
#> [422,]  73  10      0        180        0   162
#> [423,]  72  11      0         11        1   140
#> [424,]  70   3      0          3        0   150
#> [425,]  73   5      1          3        1   112
#> [426,]  76  25      1         12        1   170
#> [427,]  73  12      1         12        1   140
#> [428,]  72   2      0        180        0   120
#> [429,]  75   1      0        180        1   140
#> [430,]  72   4      1          0        1   197
#> [431,]  71   3      1          0        0   144
#> [432,]  73   5      0        180        0   126
#> [433,]  76   3      1          0        1   120
#> [434,]  71  32      1         12        1   107
#> [435,]  72   3      0        180        0   160
#> [436,]  77  11      0         11        1   150
#> [437,]  77   4      0          4        0   185
#> [438,]  72   7      1          2        0   142
#> [439,]  73  15      0         15        1   160
#> [440,]  71  16      0        180        0   140
#> [441,]  74   3      0          3        1   128
#> [442,]  76   1      0        180        0   114
#> [443,]  76   8      1          0        1   141
#> [444,]  74  19      1          4        1   200
#> [445,]  75  23      1         14        1   110
#> [446,]  74   2      0        180        0   190
#> [447,]  72   4      0         85        1   120
#> [448,]  72   4      1          3        0   160
#> [449,]  76  17      1          0        1   200
#> [450,]  75   4      1          0        1   122
#> [451,]  75   0      0          0        1   130
#> [452,]  75  12      0         12        1   160
#> [453,]  76  13      1          8        1   148
#> [454,]  75   4      1          2        1   188
#> [455,]  74   2      0        180        0   111
#> [456,]  76   5      0        180        0   185
#> [457,]  75   9      0        180        1   140
#> [458,]  77   5      1          0        0   123
#> [459,]  73  10      1          9        0   146
#> [460,]  77   1      1          0        1    90
#> [461,]  76  12      1         11        1   120
#> [462,]  78   5      1          0        1   170
#> [463,]  73   7      1          0        0   174
#> [464,]  75   3      1          1        1   171
#> [465,]  75   6      0        180        0   150
#> [466,]  78  18      0         18        1   144
#> [467,]  77   3      0        180        0   110
#> [468,]  74   2      0        180        0   100
#> [469,]  74  15      0        180        1   172
#> [470,]  74   7      0          7        0   161
#> [471,]  76  13      1          1        1   170
#> [472,]  78  32      1          9        1   198
#> [473,]  79   6      0        180        0   170
#> [474,]  78   0      0        180        1   212
#> [475,]  78  13      1          5        0   130
#> [476,]  75  12      1          1        1   120
#> [477,]  78  15      0        180        1   270
#> [478,]  80   8      0          8        1   120
#> [479,]  74  10      1          8        0   135
#> [480,]  76   1      0          1        1    83
#> [481,]  79   4      0         80        0   145
#> [482,]  78  12      1          9        0   150
#> [483,]  78   2      1          1        0   130
#> [484,]  75   4      1          0        0   212
#> [485,]  77   2      1          0        1   143
#> [486,]  78  10      0        180        1   130
#> [487,]  76  11      1          0        0   120
#> [488,]  75  11      1          4        0   162
#> [489,]  75   3      0          3        0     0
#> [490,]  76   7      0         29        1   150
#> [491,]  78   6      1          0        1   240
#> [492,]  76   3      1          0        1   140
#> [493,]  78  11      1          1        1   140
#> [494,]  79  11      0        180        0   160
#> [495,]  81   1      0          1        0   130
#> [496,]  76   4      0          4        1   160
#> [497,]  79   4      0          4        1   125
#> [498,]  76  10      1          8        0   180
#> [499,]  77   6      0          6        1   107
#> [500,]  80   3      1          0        1   120
#> [501,]  75   2      1          1        1   204
#> [502,]  78  11      0        180        1   135
#> [503,]  76   1      0          1        1   140
#> [504,]  77  31      1          3        1   161
#> [505,]  76   1      0          1        1    90
#> [506,]  78   7      1          0        1   110
#> [507,]  77   7      0        180        1   170
#> [508,]  80  15      1         12        1   150
#> [509,]  77   9      1          4        0   141
#> [510,]  82   5      0          8        1   120
#> [511,]  78   4      0         59        1   112
#> [512,]  76   7      0        161        0   151
#> [513,]  79  10      0         10        1   120
#> [514,]  80  15      1          0        1    90
#> [515,]  81   4      1          2        1   126
#> [516,]  79  28      0        164        0   100
#> [517,]  80   6      0        173        1   160
#> [518,]  78  32      0        180        1   130
#> [519,]  79   1      0         37        1   140
#> [520,]  81   3      0        180        0   184
#> [521,]  81   2      0        175        0   172
#> [522,]  78   7      0          7        1   147
#> [523,]  80   5      1          1        1   108
#> [524,]  78   4      0        180        0   175
#> [525,]  76   1      0        166        0   131
#> [526,]  81   4      1          1        1   104
#> [527,]  78  20      1          0        1   109
#> [528,]  78   3      1          1        1   152
#> [529,]  77  10      1          8        1   130
#> [530,]  77   5      0         85        0   188
#> [531,]  80   2      1          1        0   168
#> [532,]  79   6      0          6        0   152
#> [533,]  80   6      1          0        1   119
#> [534,]  78   2      0        180        0   148
#> [535,]  79  10      0        180        1   150
#> [536,]  77   4      0        180        1    98
#> [537,]  81   1      0        108        0   129
#> [538,]  79   1      0        125        0   193
#> [539,]  84  22      1         10        0   180
#> [540,]  79   4      0          4        1   121
#> [541,]  80   6      0          6        1   110
#> [542,]  83   9      1          5        1   170
#> [543,]  82   5      0        180        0   110
#> [544,]  83   5      0        180        0   148
#> [545,]  79   7      1          6        0   130
#> [546,]  83   4      0        103        0    97
#> [547,]  81  11      1          8        0   160
#> [548,]  80  11      1          8        0   170
#> [549,]  78  23      1         10        1   145
#> [550,]  79   4      0          4        1   183
#> [551,]  78   9      1          4        1   120
#> [552,]  82   8      1          1        0   128
#> [553,]  79   1      0        180        1   170
#> [554,]  81  15      0        180        1   140
#> [555,]  84   5      1          1        1    85
#> [556,]  81  20      1          9        0   170
#> [557,]  83   8      0          8        0   115
#> [558,]  81  16      0         16        1   110
#> [559,]  80  11      1          8        0   110
#> [560,]  85   4      0        180        0    90
#> [561,]  81   2      1          1        0   198
#> [562,]  83   2      0          2        1   155
#> [563,]  82   6      0        128        1   100
#> [564,]  84   4      0        167        0   198
#> [565,]  80   3      1          1        1   230
#> [566,]  82  23      1          0        0   110
#> [567,]  84   5      0        180        1   203
#> [568,]  84   4      0          4        1    85
#> [569,]  81   1      0          1        1   150
#> [570,]  84   1      0         38        1   205
#> [571,]  83   3      0        180        0   174
#> [572,]  81   4      0         90        1   138
#> [573,]  79   9      1          8        0   150
#> [574,]  85   3      1          2        1   160
#> [575,]  84   4      0         89        1   129
#> [576,]  79   4      0          4        1    60
#> [577,]  80   6      0         71        1   189
#> [578,]  83   1      0          1        1   100
#> [579,]  82  19      0         19        0   120
#> [580,]  80  30      1         13        0   220
#> [581,]  83   9      0        180        0   198
#> [582,]  79  14      1          0        0   110
#> [583,]  81  14      1         12        1   128
#> [584,]  83   2      0        154        0   130
#> [585,]  82   0      0          2        1   100
#> [586,]  85   9      1          6        1   160
#> [587,]  83   1      0        180        0   160
#> [588,]  81   4      0          4        0   175
#> [589,]  84  15      1         13        1   110
#> [590,]  82  16      1          8        0   103
#> [591,]  86  12      0        180        1   120
#> [592,]  82  15      1          0        0   183
#> [593,]  80   2      0         88        0   135
#> [594,]  83   7      0        126        0   135
#> [595,]  86   8      0          8        1   132
#> [596,]  81  16      1          9        0   180
#> [597,]  82   9      0        180        1   134
#> [598,]  84   3      0        180        1   120
#> [599,]  81  13      0        180        0   152
#> [600,]  85   3      0          3        1   118
#> [601,]  83   4      0          4        0   130
#> [602,]  87   2      0          5        1   137
#> [603,]  86  12      1          0        1   132
#> [604,]  84  16      0         70        1   150
#> [605,]  83  19      0         43        0   150
#> [606,]  84   3      1          2        0   125
#> [607,]  83  10      1          0        1   190
#> [608,]  86   2      0        180        1   169
#> [609,]  84   3      0          3        1   121
#> [610,]  83  13      1         12        0   170
#> [611,]  84   7      1          2        0   148
#> [612,]  87   2      0        180        0   113
#> [613,]  84   9      0         92        1   110
#> [614,]  84   3      0        180        1   170
#> [615,]  86   4      0         38        1   122
#> [616,]  86  13      0        177        0   163
#> [617,]  86   6      0          6        1   117
#> [618,]  86   6      1          1        0   112
#> [619,]  88   4      0          4        0   100
#> [620,]  88   4      0          4        1   115
#> [621,]  83   9      0         65        1   150
#> [622,]  86   6      0         46        0   173
#> [623,]  88   3      0        115        0   110
#> [624,]  87   8      0          8        1   157
#> [625,]  88   4      0          4        0    86
#> [626,]  89   4      0          4        1   153
#> [627,]  87   6      0        180        1   110
#> [628,]  84   8      0        180        1   119
#> [629,]  85   8      0          8        1   136
#> [630,]  84   2      0        110        1   174
#> [631,]  87  29      0         29        1    97
#> [632,]  87  15      1          9        1   138
#> [633,]  89  10      0         46        1   170
#> [634,]  88   1      0          1        0   135
#> [635,]  87   2      0        180        0   160
#> [636,]  87   6      1          0        0   125
#> [637,]  91  10      0        145        0   135
#> [638,]  86   3      1          0        1    80
#> [639,]  88   7      0         24        0   119
#> [640,]  88   8      0         50        1   154
#> [641,]  90  11      1         10        1   186
#> [642,]  86  10      0        180        1   137
#> [643,]  86   9      1          7        0   130
#> [644,]  90   4      1          0        0   121
#> [645,]  91   1      0          1        1    74
#> [646,]  87  43      0        178        1   130
#> [647,]  89   3      1          1        1   160
#> [648,]  92   1      0          1        1   167
#> [649,]  91   3      0         33        1   137
#> [650,]  87   7      0         74        1   105
#> [651,]  89  12      1          0        1   130
#> [652,]  89   4      0          4        1   159
#> [653,]  91   0      0          0        0     0
#> [654,]  89  14      0        180        1    84
#> [655,]  90  18      0        180        0   188
#> [656,]  91   4      1          0        1   120
#> [657,]  90  19      1         11        1   129
#> [658,]  91   2      0          2        1   116
#> [659,]  93   8      0        179        1   110
#> [660,]  92   4      0         76        1   149
#> [661,]  91   1      0        180        0   158
#> [662,]  90   3      0         67        0   162
#> [663,]  96   3      0         12        1    97
#> [664,]  95   8      1          5        1   150
#> [665,]  91  12      0         53        1   212
#> [666,]  93   0      1          0        1   122
#> [667,]  92   2      0          2        0   112
#> [668,]  93   4      0        180        1   135
#> [669,]  96   3      1          0        1   104
#> [670,]  96  15      1          0        1   140
#> 
#> $y
#>   [1] 180.0+   5.0+   2.0+   5.0+ 180.0+   2.0+ 180.0+ 115.0    5.0+ 180.0+
#>  [11] 180.0+ 180.0+ 180.0+   2.0+   2.0+ 180.0+ 180.0+ 180.0+   3.0  180.0+
#>  [21] 180.0+ 180.0+ 180.0+ 155.0+ 180.0+ 180.0+ 180.0+ 180.0+   5.0+ 180.0+
#>  [31] 180.0+ 180.0+ 180.0+ 180.0+ 150.0  180.0+ 180.0+ 180.0+ 180.0+   6.0+
#>  [41] 180.0+ 180.0+   5.0+ 161.0+ 180.0+ 180.0+ 180.0+ 180.0+   5.0+ 180.0+
#>  [51] 180.0+ 180.0+ 177.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+  10.0+
#>  [61] 172.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+   1.0  180.0+ 180.0+   4.0+
#>  [71] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+   7.0   88.0+   4.0+
#>  [81] 180.0+ 180.0+ 180.0+ 180.0+  77.0  180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#>  [91] 180.0+  85.0  180.0+ 180.0+ 166.0+  99.0  180.0+  16.0+ 180.0+ 152.0+
#> [101]   7.0+ 180.0+ 180.0+ 180.0+  13.0+ 171.0+ 180.0+ 180.0+ 174.0+  28.0 
#> [111]   6.0+ 180.0+ 175.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [121]  16.0+  15.0+ 180.0+ 180.0+  12.0+ 134.0+ 180.0+   8.0  180.0+ 180.0+
#> [131] 180.0+ 140.0    1.0  165.0  180.0+ 180.0+ 180.0+ 180.0+   8.0+ 180.0+
#> [141] 180.0+   0.5  180.0+ 180.0+ 180.0+ 171.0+  15.0    4.0+ 147.0+ 180.0+
#> [151] 180.0+   5.0+ 180.0+   4.0+   9.0+   1.0  180.0+ 180.0+ 180.0+ 180.0+
#> [161] 180.0+ 180.0+ 180.0+ 180.0+  64.0  180.0+ 180.0+   9.0+   0.5  180.0+
#> [171] 161.0+ 180.0+   1.0  180.0+  17.0    9.0+ 180.0+ 172.0+   8.0    1.0+
#> [181] 180.0+  77.0   13.0+   8.0+ 180.0+ 180.0+ 180.0+ 170.0  169.0    7.0 
#> [191]   7.0+   6.0  180.0+ 180.0+ 180.0+ 180.0+   3.0+ 180.0+  30.0  180.0+
#> [201] 180.0+  13.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [211] 180.0+ 180.0+ 180.0+   9.0    7.0+ 180.0+ 180.0+  84.0  180.0+   1.0 
#> [221]   1.0  180.0+   4.0+   3.0+ 167.0  180.0+  17.0  180.0+  12.0  180.0+
#> [231] 180.0+ 180.0+  14.0+ 180.0+   3.0+  88.0  180.0+  12.0  180.0+ 180.0+
#> [241] 180.0+   0.5  180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+ 180.0+
#> [251]  12.0  180.0+   9.0    3.0  180.0+ 180.0+ 180.0+   2.0+  18.0+ 180.0+
#> [261] 180.0+ 180.0+   2.0+ 103.0   15.0  180.0+   5.0+  13.0  180.0+ 166.0+
#> [271]   0.5+   3.0+ 180.0+ 175.0+ 180.0+   7.0+   5.0  180.0+ 180.0+ 180.0+
#> [281]   1.0+  18.0   11.0+  79.0   80.0  180.0+   4.0+  15.0  180.0+ 180.0+
#> [291] 180.0+ 174.0+ 180.0+ 180.0+   8.0+   3.0  175.0  180.0+  10.0  180.0+
#> [301] 180.0+   6.0  180.0+  19.0+ 180.0+ 180.0+  11.0+ 180.0+   0.5   18.0 
#> [311]   7.0+ 180.0+ 180.0+ 180.0+  93.0   21.0+ 180.0+   1.0  101.0    4.0 
#> [321] 180.0+ 180.0+ 180.0+ 171.0  180.0+ 174.0+ 180.0+   0.5  180.0+ 180.0+
#> [331] 180.0+ 180.0+   2.0  103.0    3.0+  36.0  180.0+  97.0  180.0+   7.0 
#> [341]   8.0+ 180.0+   2.0+ 180.0+  18.0  172.0+   7.0  180.0+   8.0+ 180.0+
#> [351] 180.0+  19.0    1.0   60.0   76.0  132.0   10.0+ 180.0+ 180.0+   7.0+
#> [361]   7.0+   9.0  180.0+ 180.0+ 180.0+  12.0  180.0+ 152.0  180.0+ 180.0+
#> [371] 180.0+ 180.0+ 180.0+  28.0  180.0+  16.0+ 180.0+ 180.0+  16.0+ 180.0+
#> [381] 180.0+ 180.0+   7.0+  15.0    3.0+ 180.0+ 180.0+ 180.0+   2.0    3.0+
#> [391] 180.0+  20.0  180.0+   0.5  180.0+  87.0   12.0  180.0+   4.0+ 180.0+
#> [401] 180.0+ 180.0+ 180.0+   3.0  180.0+ 175.0   14.0+ 180.0+  10.0+ 179.0+
#> [411]   1.0  180.0+ 180.0+  15.0  180.0+   1.0  180.0+   4.0+ 180.0+  10.0 
#> [421]   1.0  180.0+  11.0    3.0+   5.0  180.0+  12.0  180.0+ 180.0+ 180.0+
#> [431] 180.0+ 180.0+ 180.0+ 177.0+ 180.0+  11.0+   4.0+   7.0   15.0+ 180.0+
#> [441]   3.0  180.0+ 180.0+ 180.0+ 180.0+ 180.0+  85.0  180.0+  17.0+   4.0 
#> [451]   0.5   12.0  180.0+  46.0  180.0+ 180.0+ 180.0+   5.0  180.0+   1.0 
#> [461]  12.0  180.0+   7.0+   3.0  180.0+  18.0  180.0+ 180.0+ 180.0+   7.0 
#> [471] 180.0+  32.0  180.0+ 180.0+ 172.0   12.0  180.0+   8.0  180.0+   1.0 
#> [481]  80.0  180.0+ 180.0+   4.0+   2.0  180.0+  11.0  152.0+   3.0   29.0 
#> [491] 180.0+   3.0+ 180.0+ 180.0+   1.0    4.0    4.0   10.0+   6.0    3.0+
#> [501]   2.0+ 180.0+   1.0  171.0    1.0   43.0  180.0+ 180.0+  71.0    8.0 
#> [511]  59.0  161.0   10.0+ 180.0+  93.0  164.0  173.0  180.0+  37.0  180.0+
#> [521] 175.0+   7.0+   5.0+ 180.0+ 166.0+  71.0   20.0+   3.0+  10.0   85.0 
#> [531]  10.0    6.0+   6.0  180.0+ 180.0+ 180.0+ 108.0  125.0  180.0+   4.0 
#> [541]   6.0    9.0+ 180.0+ 180.0+ 180.0+ 103.0  180.0+ 169.0   70.0    4.0 
#> [551] 180.0+ 180.0+ 180.0+ 180.0+ 180.0+  20.0    8.0+  16.0  180.0+ 180.0+
#> [561] 180.0+   2.0  128.0  167.0    3.0+  62.0  180.0+   4.0    1.0   38.0 
#> [571] 180.0+  90.0  180.0+ 180.0+  89.0    4.0   71.0    1.0   19.0   30.0 
#> [581] 180.0+ 180.0+ 180.0+ 154.0    2.0  180.0+ 180.0+   4.0+ 180.0+  16.0+
#> [591] 180.0+  83.0   88.0  126.0    8.0  180.0+ 180.0+ 180.0+ 180.0+   3.0+
#> [601]   4.0+   5.0  180.0+  70.0   43.0  180.0+ 180.0+ 180.0+   3.0   13.0 
#> [611] 180.0+ 180.0+  92.0  180.0+  38.0  177.0    6.0+   6.0+   4.0+   4.0 
#> [621]  65.0   46.0  115.0    8.0+   4.0    4.0  180.0+ 180.0+   8.0  110.0 
#> [631]  29.0  180.0+  46.0    1.0+ 180.0+  25.0  145.0    3.0   24.0   50.0 
#> [641]  11.0  180.0+ 180.0+   4.0    1.0  178.0+   3.0+   1.0   33.0   74.0 
#> [651] 180.0+   4.0    0.5  180.0+ 180.0+   4.0  180.0+   2.0  179.0+  76.0 
#> [661] 180.0+  67.0   12.0    8.0   53.0    0.5    2.0  180.0+   3.0   15.0+
#> 
#> $weights
#> NULL
#> 
#> $offset
#> NULL
#> 


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
#> Warning: Multiple lambdas have been fit. Lambda will be set to 0.01 (see parameter 's').

# Score the predictions
predictions$score()
#> surv.cindex 
#>   0.8069356